Researcher Database

Shin-Ichiro EI
Faculty of Science Mathematics Mathematics
Specially Appointed Professor

Researcher Profile and Settings

Affiliation

  • Faculty of Science Mathematics Mathematics

Job Title

  • Specially Appointed Professor

Degree

  • (BLANK)
  • (BLANK)

URL

J-Global ID

Research Interests

  • 反応拡散系   反応拡散方程式   パルスダイナミクス   パルス解   界面ダイナミクス   パターン形成   パルス相互作用   非線形発展方程式   自己組織化   反応拡散方程式系   平均曲率流   界面方程式   中心多様体   自己複製パターン   局在解   特異点   関数方程式   関数方程式論   フロント進行波解   平面解   分岐構造   不変多様体   パルスの弾性的反射   粒子的反射運動   4階の方程式   分岐点   曲面の運動   欠陥のダイナミクス   摂動展開   チューリング不安定性   大域解析学   Large Area Analysis   

Research Areas

  • Natural sciences / Basic analysis
  • Natural sciences / Mathematical analysis
  • Natural sciences / Applied mathematics and statistics
  • Natural sciences / Basic mathematics

Educational Organization

Academic & Professional Experience

  • 2013/04 - Today Hokkaido University
  • 2012 - 2013 Kyushu University

Education

  •        - 1987  Hiroshima University
  •        - 1987  Hiroshima University  Graduate School, Division of Natural Science
  •        - 1982  Kyoto University  Faculty of Science
  •        - 1982  Kyoto University  Faculty of Science

Association Memberships

  • THE JAPANESE SOCIETY FOR MATHEATICAL BIOLOGY   日本応用数理学会   日本数学会   

Research Activities

Published Papers

  • Shin-Ichiro Ei, Hideo Ikeda, Toshiyuki Ogawa
    Physica D: Nonlinear Phenomena 448 133703 - 133703 0167-2789 2023/06
  • Takashi Hayashi, Takeshi Tomomizu, Takamichi Sushida, Masakazu Akiyama, Shin-Ichiro Ei, Makoto Sato
    Current biology : CB 32 (9) 2101 - 2109 2022/05/09 [Refereed]
     
    Tiling patterns are observed in many biological structures. The compound eye is an interesting example of tiling and is often constructed by hexagonal arrays of ommatidia, the optical unit of the compound eye. Hexagonal tiling may be common due to mechanical restrictions such as structural robustness, minimal boundary length, and space-filling efficiency. However, some insects exhibit tetragonal facets.1-4 Some aquatic crustaceans, such as shrimp and lobsters, have evolved with tetragonal facets.5-8 Mantis shrimp is an insightful example as its compound eye has a tetragonal midband region sandwiched between hexagonal hemispheres.9,10 This casts doubt on the naive explanation that hexagonal tiles recur in nature because of their mechanical stability. Similarly, tetragonal tiling patterns are also observed in some Drosophila small-eye mutants, whereas the wild-type eyes are hexagonal, suggesting that the ommatidial tiling is not simply explained by such mechanical restrictions. If so, how are the hexagonal and tetragonal patterns controlled during development? Here, we demonstrate that geometrical tessellation determines the ommatidial tiling patterns. In small-eye mutants, the hexagonal pattern is transformed into a tetragonal pattern as the relative positions of neighboring ommatidia are stretched along the dorsal-ventral axis. We propose that the regular distribution of ommatidia and their uniform growth collectively play an essential role in the establishment of tetragonal and hexagonal tiling patterns in compound eyes.
  • Shin-Ichiro Ei, Hiroyuki Ochiai, Yoshitaro Tanaka
    Journal of Computational and Applied Mathematics 402 113795 - 113795 0377-0427 2022/03
  • Masataka Kuwamura, HirofumiIzuhara, Shin-ichiro Ei
    Journal of Mathematical Biology 84 (4) 0303-6812 2022/02
  • Miaoxing Wang, Xujun Han, Chuyan Liu, Rie Takayama, Tetsuo Yasugi, Shin-Ichiro Ei, Masaharu Nagayama, Yoshitaro Tanaka, Makoto Sato
    Nature Communications 12 (1) 2021/12 
    AbstractWhile Delta non-autonomously activates Notch in neighboring cells, it autonomously inactivates Notch through cis-inhibition, the molecular mechanism and biological roles of which remain elusive. The wave of differentiation in the Drosophila brain, the ‘proneural wave’, is an excellent model for studying Notch signaling in vivo. Here, we show that strong nonlinearity in cis-inhibition reproduces the second peak of Notch activity behind the proneural wave in silico. Based on this, we demonstrate that Delta expression induces a quick degradation of Notch in late endosomes and the formation of the twin peaks of Notch activity in vivo. Indeed, the amount of Notch is upregulated and the twin peaks are fused forming a single peak when the function of Delta or late endosomes is compromised. Additionally, we show that the second Notch peak behind the wavefront controls neurogenesis. Thus, intracellular trafficking of Notch orchestrates the temporal dynamics of Notch activity and the temporal patterning of neurogenesis.
  • Shin Ichiro Ei, Hiroyuki Kitahata, Yuki Koyano, Masaharu Nagayama
    Physica D: Nonlinear Phenomena 422 0167-2789 2021/08 
    The authors regret that the experimental condition was wrongly described in Section 4 in page 20 and the caption of Fig. 5 in page 21. The concentration of camphor methanol solution was 3 mol/L, not 0.3 mol/L. The authors would like to apologise for any inconvenience caused.
  • Shin-Ichiro Ei, Hiroshi Ishii, Makoto Sato, Yoshitaro Tanaka, Miaoxing Wang, Tetsuo Yasugi
    Journal of Mathematical Biology 82 (6) 57  0303-6812 2021/05 
    In this paper, we introduce a continuation method for the spatially discretized models, while conserving the size and shape of the cells and lattices. This proposed method is realized using the shift operators and nonlocal operators of convolution types. Through this method and using the shift operator, the nonlinear spatially discretized model on the uniform and nonuniform lattices can be systematically converted into a spatially continuous model; this renders both models point-wisely equivalent. Moreover, by the convolution with suitable kernels, we mollify the shift operator and approximate the spatially discretized models using the nonlocal evolution equations, rendering suitable for the application in both experimental and mathematical analyses. We also demonstrate that this approximation is supported by the singular limit analysis, and that the information of the lattice and cells is expressed in the shift and nonlocal operators. The continuous models designed using our method can successfully replicate the patterns corresponding to those of the original spatially discretized models obtained from the numerical simulations. Furthermore, from the observations of the isotropy of the Delta-Notch signaling system in a developing real fly brain, we propose a radially symmetric kernel for averaging the cell shape using our continuation method. We also apply our method for cell division and proliferation to spatially discretized models of the differentiation wave and describe the discrete models on the sphere surface. Finally, we demonstrate an application of our method in the linear stability analysis of the planar cell polarity model.
  • Shin-Ichiro Ei, Hiroshi Ishii
    Discrete & Continuous Dynamical Systems - B 26 (1) 173 - 190 1553-524X 2021
  • Shin-Ichiro Ei, Hiroshi Ishii, Shigeru Kondo, Takashi Miura, Yoshitaro Tanaka
    Journal of Theoretical Biology 509 110496 - 110496 0022-5193 2021/01
  • Yuto Naroda, Yoshie Endo, Kenji Yoshimura, Hiroshi Ishii, Shin-Ichiro Ei, Takashi Miura
    PLOS ONE 15 (12) e0235802 - e0235802 2020/12/17 
    Sutures, the thin, soft tissue between skull bones, serve as the major craniofacial growth centers during postnatal development. In a newborn skull, the sutures are straight; however, as the skull develops, the sutures wind dynamically to form an interdigitation pattern. Moreover, the final winding pattern had been shown to have fractal characteristics. Although various molecules involved in suture development have been identified, the mechanism underlying the pattern formation remains unknown. In a previous study, we reproduced the formation of the interdigitation pattern in a mathematical model combining an interface equation and a convolution kernel. However, the generated pattern had a specific characteristic length, and the model was unable to produce a fractal structure with the model. In the present study, we focused on the anterior part of the sagittal suture and formulated a new mathematical model with time–space-dependent noise that was able to generate the fractal structure. We reduced our previous model to represent the linear dynamics of the centerline of the suture tissue and included a time–space-dependent noise term. We showed theoretically that the final pattern from the model follows a scaling law due to the scaling of the dispersion relation in the full model, which we confirmed numerically. Furthermore, we observed experimentally that stochastic fluctuation of the osteogenic signal exists in the developing skull, and found that actual suture patterns followed a scaling law similar to that of the theoretical prediction.
  • Shin-Ichiro Ei, Hiroshi Ishii, Makoto Sato, Yoshitaro Tanaka, Miaoxing Wang, Tetsuo Yasugi
    Journal of Mathematical Biology 81 (4-5) 981 - 1028 0303-6812 2020/11 
    Abstract In this paper, we introduce a continuation method for the spatially discretized models, while conserving the size and shape of the cells and lattices. This proposed method is realized using the shift operators and nonlocal operators of convolution types. Through this method and using the shift operator, the nonlinear spatially discretized model on the uniform and nonuniform lattices can be systematically converted into a spatially continuous model; this renders both models point-wisely equivalent. Moreover, by the convolution with suitable kernels, we mollify the shift operator and approximate the spatially discretized models using the nonlocal evolution equations, rendering suitable for the application in both experimental and mathematical analyses. We also demonstrate that this approximation is supported by the singular limit analysis, and that the information of the lattice and cells is expressed in the shift and nonlocal operators. The continuous models designed using our method can successfully replicate the patterns corresponding to those of the original spatially discretized models obtained from the numerical simulations. Furthermore, from the observations of the isotropy of the Delta–Notch signaling system in a developing real fly brain, we propose a radially symmetric kernel for averaging the cell shape using our continuation method. We also apply our method for cell division and proliferation to spatially discretized models of the differentiation wave and describe the discrete models on the sphere surface. Finally, we demonstrate an application of our method in the linear stability analysis of the planar cell polarity model.
  • Shin-Ichiro Ei, Jong-Shenq Guo, Hiroshi Ishii, Chin-Chin Wu
    Journal of Mathematical Analysis and Applications 487 (2) 124007 - 124007 0022-247X 2020/07
  • S. Seirin-Lee, T. Sukekawa, T. Nakahara, H. Ishii, S.-I. Ei
    Journal of Mathematical Biology 80 (6) 1885 - 1917 0303-6812 2020/05 
    Abstract Cell polarity is an important cellular process that cells use for various cellular functions such as asymmetric division, cell migration, and directionality determination. In asymmetric cell division, a mother cell creates multiple polarities of various proteins simultaneously within her membrane and cytosol to generate two different daughter cells. The formation of multiple polarities in asymmetric cell division has been found to be controlled via the regulatory system by upstream polarity of the membrane to downstream polarity of the cytosol, which is involved in not only polarity establishment but also polarity positioning. However, the mechanism for polarity positioning remains unclear. In this study, we found a general mechanism and mathematical structure for the multiple streams of polarities to determine their relative position via conceptional models based on the biological example of the asymmetric cell division process of C. elegans embryo. Using conceptional modeling and model reductions, we show that the positional relation of polarities is determined by a contrasting role of regulation by upstream polarity proteins on the transition process of diffusion dynamics of downstream proteins. We analytically prove that our findings hold under the general mathematical conditions, suggesting that the mechanism of relative position between upstream and downstream dynamics could be understood without depending on a specific type of bio-chemical reaction, and it could be the universal mechanism in multiple streams of polarity dynamics of the cell.
  • Center Manifold Theory for the Motions of Camphor Boats with Delta Function
    Kota Ikeda, Shin-Ichiro Ei
    Journal of Dynamics and Differential Equations  - 37 2020/01 [Refereed][Not invited]
  • Spike solutions for a mass conservation reaction-diffusion system
    Shin-Ichiro Ei, Shyuh-Yaur Tzeng
    DCDS-A 2019 [Refereed][Not invited]
  • Reduced model of a reaction-diffusion system for the collective motion of camphor boats
    Kota Ikeda, Shin-Ichiro Ei, Masaharu Nagayama, Mamoru Okamoto, Akiyasu Tomoeda
    PHYSICAL REVIEW E 99 062208 (1) 7  2019 [Refereed][Not invited]
  • Tanaka Y, Yasugi T, Nagayama M, Sato M, Ei SI
    Scientific reports 8 (1) 12484  2018/08 [Refereed][Not invited]
  • Chao-Nien Chen, Shin-Ichiro Ei, Shyuh-yaur Tzeng
    PHYSICA D-NONLINEAR PHENOMENA 2018/07 [Refereed][Not invited]
  • Shin-Ichiro Ei, Hiroyuki Kitahata, Yuki Koyano, Masaharu Nagayama
    Physica D: Nonlinear Phenomena 366 10 - 26 0167-2789 2018/03/01 [Refereed][Not invited]
     
    In this study, the interaction between two non-radially symmetric camphor particles is theoretically investigated and the equation describing the motion is derived as an ordinary differential system for the locations and the rotations. In particular, slightly modified non-radially symmetric cases from radial symmetry are extensively investigated and explicit motions are obtained. For example, it is theoretically shown that elliptically deformed camphor particles interact so as to be parallel with major axes. Such predicted motions are also checked by real experiments and numerical simulations.
  • Masataka Kuwamura, Sungrim Seirin-Lee, Shin-ichiro Ei
    SIAM Journal on Applied Mathematics 78 (6) 3238 - 3257 0036-1399 2018/01
  • Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji
    Discrete & Continuous Dynamical Systems - S 0 (0) 1937-1179 2018 [Refereed][Not invited]
  • Makoto Sato, Tetsuo Yasugi, Yoshitaro Tanaka, Masaharu Nagayama, Shin-Ichiro Ei
    CYTOKINE 100 127 - 127 1043-4666 2017/12 [Refereed][Not invited]
  • Daiki Sasaki, Hitomi Nakajima, Yoshimi Yamaguchi, Ryuji Yokokawa, Shin-Ichiro Ei, Takashi Miura
    JOURNAL OF THEORETICAL BIOLOGY 429 95 - 104 0022-5193 2017/09 [Refereed][Not invited]
     
    Vasculogenesis is the earliest process in development for spontaneous formation of a primitive capillary network from endothelial progenitor cells. When human umbilical vein endothelial cells (HUVECs) are cultured on Matrigel, they spontaneously form a network structure which is widely used as an in vitro model of vasculogenesis. Previous studies indicated that chemotaxis or gel deformation was involved in spontaneous pattern formation. In our study, we analyzed the mechanism of vascular pattern formation using a different system, meshwork formation by HUVECs embedded in fibrin gels. Unlike the others, this experimental system resulted in a perfusable endothelial network in vitro. We quantitatively observed the dynamics of endothelial cell protrusion and developed a mathematical model for one-dimensional dynamics. We then extended the one-dimensional model to two-dimensions. The model showed that random searching by endothelial cells was sufficient to generate the observed network structure in fibrin gels. (C) 2017 Elsevier Ltd. All rights reserved.
  • Shin-Ichiro Ei, Kei Nishi, Yasumasa Nishiura, Takashi Teramoto
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S 8 (5) 857 - 869 1937-1632 2015/10 [Refereed][Not invited]
     
    We consider the mixed ODE-PDE system called a hybrid system, in which the two interfaces interact with each other through a continuous medium and their equations of motion are derived in a weak interaction framework. We study the bifurcation property of the resulting hybrid system and construct an unstable standing pulse solution, which plays the role of a separator for dynamic transition from standing breather to annihilation behavior between two interfaces.
  • Shin-Ichiro Ei, Kota Ikeda, Masaharu Nagayama, Akiyasu Tomoeda
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S 8 (5) 847 - 856 1937-1632 2015/10 [Refereed][Not invited]
     
    Various motions of camphor boats in the water channel exhibit both a homogeneous and an inhomogeneous state, depending on the number of boats, when unidirectional motion along an annular water channel can be observed even with only one camphor boat. In a theoretical research, the unidirectional motion is represented by a traveling wave solution in a model. Since the experimental results described above are thought of as a kind of bifurcation phenomena, we would like to investigate a linearized eigenvalue problem in order to prove the destabilization of a traveling wave solution. However, the eigenvalue problem is too difficult to analyze even if the number of camphor boats is 2. Hence we need to make a reduction on the model. In the present paper, we apply the center manifold theory and reduce the model to an ordinary differential system.
  • Shin-Ichiro Ei, Kota Ikeda, Eiji Yanagida
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS 14 (2) 717 - 736 1534-0392 2015/03 [Refereed][Not invited]
     
    Our aim in this paper is to prove the instability of multi-spot patterns in a shadow system, which is obtained as a limiting system of a reaction-diffusion model as one of the diffusion coefficients goes to infinity. Instead of investigating each eigenfunction for a linearized operator, we characterize the eigenspace spanned by unstable eigenfunctions.
  • Shin-Ichiro Ei, Hirofumi Izuhara, Masayasu Mimura
    PHYSICA D-NONLINEAR PHENOMENA 277 1 - 21 0167-2789 2014/06 [Refereed][Not invited]
     
    The Keller-Segel system with the logistic growth term is discussed from the spatio-temporal-oscillation point of view. This system exhibits two different types of spatio-temporal oscillations in certain distinct parameter regimes. In this paper, we study the difference between the two types of spatio-temporal oscillations. In particular, the characteristic properties of the behaviors become clear in a limiting system when a certain parameter value tends to zero. Moreover, we demonstrate that the onset of one of the spatio-temporal oscillatory patterns is an infinite-dimensional relaxation oscillation that consists of slow and fast dynamics. (C) 2014 Elsevier B.V. All rights reserved.
  • APPLICATION OF A CENTER MANIFOLD THEORY TO A REACTION-DIFFUSION SYSTEM OF COLLECTIVE MOTION OF CAMPHOR DISKS AND BOATS
    S.-I. Ei, K. Ikeda, M. Nagayama, A. Tomoeda
    MATHEMATICA BOHEMICA 139 (2) 363 - 371 2014 [Refereed][Not invited]
  • Shin-Ichiro Ei, Toshio Ishimoto
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS 30 (1) 69 - 90 0916-7005 2013 [Refereed][Not invited]
     
    It is known that for special types of reaction-diffusion Systems, such as the Gierer-Meinhardt model and the Gray-Scott model, stable stationary spike solutions exist on boundary points with maximal curvature. In this paper, we rigorously give the equation describing the motion of spike solutions along boundaries for general types of reaction-diffusion systems in R-2. We also apply the general results to the Gierer-Meinhardt model and show that a single spike solution moves toward a boundary point with locally maximal curvature. Moreover, by showing the repulsive interaction of spikes along boundaries for solutions of the Gierer-Meinhardt model, we have stable multispike stationary solutions in the neighborhood of a boundary point with locally maximal curvature.
  • Shin-Ichiro Ei, Toshio Ishimoto
    Networks and Heterogeneous Media 8 (1) 191 - 209 1556-1801 2013 [Refereed][Not invited]
     
    We consider pulse-like localized solutions for reaction-diffusion sys- tems on a half line and impose various boundary conditions at one end of it. It is shown that the movement of a pulse solution with the homogeneous Neumann boundary condition is completely opposite from that with the Dirichlet boundary condition. As general cases, Robin type boundary conditions are also considered. Introducing one parameter connecting the Neumann and the Dirichlet boundary conditions, we clarify the transition of motions of solutions with respect to boundary conditions. © American Institute of Mathematical Sciences.
  • Shin-Ichiro Ei, Hirofumi Izuhara, Masayasu Mimura
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B 17 (6) 1859 - 1887 1531-3492 2012/09 [Refereed][Not invited]
     
    Two types of aggregation systems with Fisher-KPP growth are proposed. One is described by a normal reaction-diffusion system, and the other is described by a cross-diffusion system. If the growth effect is dominant, a spatially constant equilibrium solution is stable. When the growth effect becomes weaker and the aggregation effect become dominant, the solution is destabilized so that spatially non-constant equilibrium solutions, which exhibit Turing's patterns, appear. When the growth effect weakens further, the spatially non-constant equilibrium solutions are destabilized through Hopf bifurcation, so that oscillatory Turing's patterns appear. Finally, when the growth effect is extremely weak, there appear spatio-temporal periodic solutions exhibiting infinite dimensional relaxation oscillation.
  • EI Shin-Ichiro
    RIMS Kokyuroku Bessatsu 京都大学 31 (B31) 195 - 210 1881-6193 2012 [Refereed][Not invited]
  • S.-I. Ei, H. Izuhara, M. Mimura
    RIMS Kokyuroku Bessatsu 京都大学 35 (B35) 31 - 40 1881-6193 2012 [Refereed][Not invited]
  • Wulin Weng, Shin-Ichiro Ei, Kunishige Ohgane
    Journal of Math-for-Industry Faculty of Mathematics, Kyushu University 4 123 - 133 1884-4774 2012 [Refereed][Not invited]
  • Shin-Ichiro Ei, Kota Ikeda, Yasuhito Miyamoto
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS 11 (1) 115 - 145 1534-0392 2012/01 [Refereed][Not invited]
     
    The Gierer-Meinhardt system is a mathematical model describing the process of hydra regeneration. The authors of [3] showed that if an initial value is close to a spiky pattern and its peak is far away from the boundary, the solution of the shadow Gierer-Meinhardt system, called a interior spike solution, moves towards a point on boundary which is the closest to the peak. However it has not been studied how a solution close to a spiky pattern with the peak on the boundary, called a boundary spike solution moves along the boundary. In this paper, we consider the shadow Gierer-Meinhardt system and dynamics of a boundary spike solution. Our results state that a boundary spike moves towards a critical point of the curvature of the boundary and approaches a stable stationary solution.
  • Shin-Ichiro Ei, Kunishige Ohgane
    KYUSHU JOURNAL OF MATHEMATICS 65 (2) 197 - 217 1340-6116 2011/09 [Refereed][Not invited]
     
    We develop a systematic method for deriving the phase dynamics of perturbed periodic solutions. The method is to regard periodic solutions as slowly modulated traveling solutions on the circle. There, problems are reduced to the perturbed problems from stationary solutions on the circle. This makes the treatment of periodic solutions far easier and systematic. We also give the rigorous proofs for this method.
  • Chao-Nien Chen, Shin-Ichiro Ei, Ya-Ping Lin, Shih-Yin Kung
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 36 (6) 998 - 1015 0360-5302 2011 [Refereed][Not invited]
     
    An article by Kondo and Asai demonstrated that the pattern formation and change on the skin of tropical fishes can be predicted well by reaction-diffusion models of Turing type. As being observed, a common pattern structure is the rearrangement of stripe pattern, and defect like heteroclinic solution appeared between the patterns with different number of stripes. We consider FitzHugh-Nagumo type reaction-diffusion systems with anisotropic diffusion. Under a sufficient condition in diffusivity, we apply variational arguments to show the existence of standing waves joining with Turing patterns.
  • Hideo Ikeda, Shin-Ichiro Ei
    PHYSICA D-NONLINEAR PHENOMENA 239 (17) 1637 - 1649 0167-2789 2010/09 [Refereed][Not invited]
     
    We herein consider two-component reaction-diffusion systems with a specific bistable and odd symmetric nonlinearity, which have the bifurcation structure of pitchfork type traveling front solutions with opposite velocities. We introduce a spatial heterogeneity, for example, a Heaviside-like abrupt change at the origin in the space, into diffusion coefficients. Numerically, the responses of traveling fronts via the heterogeneity can be classified into four types of behavior depending on the strength of the heterogeneity, which, in the present paper, is represented by the height of the jump: passage, stoppage, and two types of reflection. The goal of the present paper is to reduce the PDE dynamics to finite-dimensional ODE systems on a center manifold and show the mathematical mechanism for producing the four types of response in the PDE systems using finite-dimensional ODE systems. The reduced ODE systems include the terms (referred to as heterogeneous perturbations) originating from the interaction between traveling front solutions and the heterogeneity, which is very important for determining the dynamics of the ODE systems. In the present paper, we succeed in calculating these heterogeneous perturbations exactly and explicitly. (C) 2010 Elsevier B.V. All rights reserved.
  • Shin-Ichiro Ei, Hiroshi Matsuzawa
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS 26 (3) 901 - 921 1078-0947 2010/03 [Refereed][Not invited]
     
    In this paper we study the dynamics of a single transition layer of a solution to a spatially inhomogeneous bistable reaction diffusion equation in one space dimension. The spatial inhomogeneity is given by a function a(x). In particular, we consider the case where a(x) is identically zero on an interval I and study the dynamics of the transition layer on I. In this case the dynamics of the transition layer on I becomes so-called very slow dynamics. In order to analyze such a dynamics, we construct an attractive local invariant manifold giving the dynamics of the transition layer and we derive an equation describing the flow on the manifold. We also give applications of our results to two well known nonlinearities of bistable type.
  • Chao-Nien Chen, Shin-Ichiro Ei, Ya-Ping Lin
    SIAM JOURNAL ON APPLIED MATHEMATICS 70 (8) 2822 - 2843 0036-1399 2010 [Refereed][Not invited]
     
    This paper deals with reaction-diffusion systems on an infinitely long strip in R-2. Through a pitchfork bifurcation, spatially heterogeneous patterns exist in a neighborhood of Turing instability. Motivated by the works of Kondo and Asai, we study wavefront solution heteroclinic to Turing patterns. It will be seen that the dynamics of a wavefront can be approximated by a fourth order equation of buckling type.
  • Xinfu Chen, Shin-Ichiro Ei, Masayasu Mimura
    NETWORKS AND HETEROGENEOUS MEDIA 4 (1) 1 - 18 1556-1801 2009/03 [Refereed][Not invited]
     
    In the present paper, a model describing the self-motion of a camphor disc on water is proposed. The stability of a standing camphor disc is investigated by analyzing the model equation, and a pitchfork type bifurcation diagram of a traveling spot is shown. Multiple camphor discs are also treated by the model equations, and the repulsive interaction of spots is discussed.
  • Kunishige Ohgane, Shin-Ichiro Ei, Hitoshi Mahara
    APPLIED MATHEMATICAL MODELLING 33 (2) 797 - 811 0307-904X 2009/02 [Refereed][Not invited]
     
    Based oil neurophysiological evidence, theoretical studies have shown that walking can be generated by mutual entrainment of oscillations of a central pattern generator (CPG) and a body. However, it has also been shown that the time delay in the sensorimotor loop destabilizes mutual entrainment, and results in the failure to walk. Recently, it has been reported that if (a) the neuron model used to construct the CPG is replaced by physiologically faithful neuron model (Bonhoeffer-Van der Pol type) and (b) the mechanical impedance of the body (muscle viscoelasticity) is controlled depending oil the angle between two legs, the phase relationship between CPG activity and body motion could be flexibly locked according to the loop delay and, therefore, mutual entrainment can be stabilized. That is, locomotor control adaptive to the loop delay can emerge from the coupling between CPG and body. Here, we call this mechanism flexible-phase locking. In this paper, we construct a system of coupled oscillators as a simplified model of a walking system to theoretically investigate the mechanism of flexible-phase locking, and to analyze the simplified model. The analysis suggests that the following are required as the essential mechanism: (i) an asymptotically stable limit cycle of the coupling system of CPG and body and (ii) a sign difference between afferent and efferent coupling coefficients. (C) 2007 Elsevier hic. All rights reserved.
  • Shin-Ichiro Ei, Tohru Tsujikawa
    KYBERNETIKA 45 (4) 625 - 633 0023-5954 2009 [Refereed][Not invited]
     
    Hildebrand et al. [5, 7] proposed an adsorbate-induced phase transition model. For this model, Takei et al. [10] found several stationary and evolutionary patterns by numerical simulations. Due to bistability of the system, there appears a phase separation phenomenon and an interface separating these phases. In this paper, we introduce the equation describing the motion of two interfaces in R(2) and discuss an application. Moreover, we prove the existence of the traveling front solution which approximates the shape of the solution in the neighborhood of the interface.
  • Eigenfunctions of the adjoint operator associated with a pulse solution of some reaction-diffusion systems
    S.-I. Ei, H. Ikeda, K. Ikeda, E. Yanagida
    Bull. Inst. Math. Academia Sinica 3 603 - 666 2008 [Refereed][Not invited]
  • Reinitialization in bipedal locomoter control
    K. Ohgane, S.-I. Ei
    RIMS Kokyuroku Bessatsu (B3) 207 - 230 2007 [Refereed][Not invited]
  • A Ohgane, K Ohgane, S Ei, H Mahara, T Ohtsuki
    BIOLOGICAL CYBERNETICS 93 (6) 426 - 435 0340-1200 2005/12 [Refereed][Not invited]
     
    An important feature of human locomotor control is the instant adaptability to unpredictable changes of conditions surrounding the locomotion. Humans, for example, can seamlessly adapt their walking gait following a sudden ankle impairment (e.g., as a result of an injury). In this paper, we propose a theoretical study of the mechanisms underlying flexible locomotor control. We hypothesize that flexibility is achieved by modulating the posture at the beginning of the stance phase-the initial state. Using a walking model, we validate our hypothesis through computer simulations.
  • SI Ei, M Kuwamura, Y Morita
    PHYSICA D-NONLINEAR PHENOMENA 207 (3-4) 171 - 219 0167-2789 2005/08 [Refereed][Not invited]
     
    In this paper singular perturbation problems in reaction-diffusion systems are studied from a viewpoint of variational principle. The goal of the study is to provide an unified and transparent framework to understand existence, stability and dynamics of solutions with transition layers in contrast to previous works in many literatures on singular perturbation theory. (c) 2005 Elsevier B.V. All rights reserved.
  • K Ohgane, S Ei, K Kazutoshi, T Ohtsuki
    BIOLOGICAL CYBERNETICS 90 (2) 125 - 132 0340-1200 2004/02 [Refereed][Not invited]
     
    Based on neurophysiological evidence, theoretical studies have shown that locomotion is generated by mutual entrainment between the oscillatory activities of central pattern generators (CPGs) and body motion. However, it has also been shown that the time delay in the sensorimotor loop can destabilize mutual entrainment and result in the failure to walk. In this study, a new mechanism called flexible-phase locking is proposed to overcome the time delay. It is realized by employing the Bonhoeffer-Van der Pol formalism - well known as a physiologically faithful neuronal model - for neurons in the CPG. The formalism states that neurons modulate their phase according to the delay so that mutual entrainment is stabilized. Flexible-phase locking derives from the phase dynamics related to an asymptotically stable limit cycle of the neuron. The effectiveness of the mechanism is verified by computer simulations of a bipedal locomotion model.
  • SI Ei, JC Wei
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS 19 (2) 181 - 226 0916-7005 2002/06 [Refereed][Not invited]
     
    In this paper, the Gierer-Meinhardt model systems with finite diffusion constants in the whole space R-2 is considered. We give a regorous proof on the existence and the stability of a single spike solution, and by using such informations, the repulsive dynamics of the interacting multi single-spike solutions is also shown when distances between spike solutions are sufficiently large. This clarifies some part of the mechanism of the evolutional process of localized patterns appearing in the Gierer-Meinhardt model equations.
  • Shin-Ichiro Ei, Yasumasa Nishiura, Kei-Ichi Ueda
    Japan Journal of Industrial and Applied Mathematics 18 (2) 181 - 205 0916-7005 2001 [Refereed][Not invited]
     
    Since early 90's, much attention has been paid to dynamic dissipative patterns in laboratories, especially, self-replicating pattern (SRP) is one of the most exotic phenomena. Employing model system such as the Gray-Scott model, it is confirmed also by numerics that SRP can be obtained via destabilization of standing or traveling spots. SRP is a typical example of transient dynamics, and hence it is not a priori clear that what kind of mathematical framework is appropriate to describe the dynamics. A framework in this direction is proposed by Nishiura-Ueyama [16], i.e., hierarchy structure of saddle-node points, which gives a basis for rigorous analysis. One of the interesting observation is that when there occurs self-replication, then only spots (or pulses) located at the boundary (or edge) are able to split. Internal ones do not duplicate at all. For 1D-case, this means that the number of newly born pulses increases like 2k after k-th splitting, not 2n-splitting where all pulses split simultaneously. The main objective in this article is two-fold: One is to construct a local invariant manifold near the onset of self-replication, and derive the nonlinear ODE on it. The other is to study the manner of splitting by analysing the resulting ODE, and answer the question "2n-splitting or edge-splitting?" starting from a single pulse. It turns out that only the edge-splitting occurs, which seems a natural consequence from a physical point of view, because the pulses at edge are easier to access fresh chemical resources than internal ones.
  • S.-I. Ei, R. Ikota, M. Mimura
    Annals of Physics 1 (280) 236 - 298 1463-9963 1999/06 [Refereed][Not invited]
     
    We consider a reaction-diffusion system to describe the interaction of three competing species which move by diffusion in R2, under the situation where all of the diffusion rates are small and all of the inter-specific competition rates are large. The resulting system possesses three locally stable spatially constant equilibria, each of which implies that only one of the competing species survive and the other two are extinct. Since the diffusion rates are small, internal layer regions appear as sharp interfaces with triple junctions, which generally divide the whole plane into three different regions occupied by only one of the species. The dynamics of interfaces as well as triple junctions are numerically studied. More specifically, assuming that three competing species are almost equal in competitive strength, we derive an angle condition between any neighboring interfaces at triple junctions by formal asymptotic analysis. Furthermore, for more general cases, we numerically study the dynamics of segregating patterns of three competing species from interfacial view points.
  • Singular perturbation problems to a combustion equation in very long cylindrical domains
    M. Mimura, K. Sakamoto, S.-I. Ei
    AMS/IP Studies in Advanced Math. 3 75 - 84 1997 [Refereed][Not invited]
  • Pattern formation in heterogeneous reaction-diffusion- advection systems with an application to population dynamics
    S.-I. Ei, M. Mimura
    SIAM J. Math. Anal. 21 (346) 361  1990 [Refereed][Not invited]
  • Phase separation in an activator-inhibitor medium
    M. Mimura, S.-I. Ei, M. Kuwamura
    Forma 4 65 - 73 1989 [Refereed][Not invited]
  • The effect of non-local convection on reaction-diffusion equations
    EI Shin-Ichiro
    Hiroshima Math. J. 17 281 - 307 1987 [Refereed][Not invited]
  • Transient and large time behaviors of solutions to heterogeneous reaction-diffusion equations
    S.-I. Ei, M. Mimura
    Hiroshima Math. J. 14 649 - 678 1984 [Refereed][Not invited]

Books etc

Conference Activities & Talks

  • Motion of pulses for reaction diffusion systems from the viewpoint of adjoint eigenfunctions  [Invited]
    EI Shin-Ichiro
    survey talk in China-Japan Workshop for Young Researchers on Nonlinear Diffusion Equations  2019/10  School of Mathematical Sciences, Capital Normal University, Beijing, China.
  • Pulse Dynamics in FitzHugh-Nagumo Systems on Heterogeneous Media  [Invited]
    EI Shin-Ichiro
    Colloquium in Capital Normal University  2019/10  首都師苑大学新教二楼527教室
  • 反応拡散系におけるパルスの挙動  [Invited]
    栄 伸一郎
    非線形偏微分方程式の理論と応用  2019/09  北海道大学応用科学フロンティア棟2階鈴木章ホール 
    日時:2019年9月9日(月)~9月11日(水)
  • 分化の波の数理モデルとその解析  [Invited]
    栄 伸一郎
    「数理が紡ぐ新しい科学研究」連携ワークショップ第一回 ・生命医科学と数理科学・  2019/08  北海道大学フロンティア応用科学研究棟 1階セミナー室 
    日時 2019年(令和元年)8月19日・20日
  • Effective nonlocal kernels on Reaction-diffusion networks  [Invited]
    EI Shin-Ichiro
    Mathematical modeling, simulations and theories related to biological phenomena - Part 2, ICIAM2019  2019/07 
    ICIAM2019, JULY 15-19, Valencia, Spain.
  • Dynamics of Pulses for Mass-Conserved Reaction-Diffusion Systems Related to Cell Polarity, MS169 Recent Developments in Dynamics of Localized Patterns - Part II of II  [Invited]
    EI Shin-Ichiro
    SIAM Conference on Applications of Dynamical Systems (DS19)  2019/05 
    May 19 - 23, 2019
  • Motion of a Pulse for Mass-Conserved Reaction-Diffusion Systems Related to Cell Polarity  [Invited]
    EI Shin-Ichiro
    Workshop on Emerging Areas in Reaction-diffusion Systems:Mathematical Theory and Applications to Physics, Biology and Social Sciences  2019/04  華東師範大学(上海市)
  • 質量保存則を持つ反応拡散系におけるパルスの運動  [Invited]
    栄 伸一郎
    非線形現象の数理解析 ~池田勉先生退職記念研究会~  2019/03  北海道大学電子科学研究所中央キャンパス総合研究棟2号館5階講義室  石渡哲哉(芝浦工業大学)長山雅晴(北海道大学)森田善久(龍谷大学)
     
    日時:2019年3月27日(水)10: 00-17: 00
  • 分化の波を通して見る数理モデル構築と解析のための新しい試み  [Invited]
    栄 伸一郎
    CREST・さきがけ数学関連領域合同シンポジウム「数学パワーが世界を変える 2019」  2019/03  東京ガーデンパレス3階平安/白鳳(ポスター会場)  文部科学省, 九州大学, 国立研究開発法人科学技術振興機構
  • 非一様媒質上のフロント解のダイナミクス  [Invited]
    栄 伸一郎
    反応拡散系のパターンダイナミクス2  2019/03  富山大学理学部8121
  • Motion of a pulse for mass-conserved reaction-diffusion systems  [Invited]
    EI Shin-Ichiro
    反応拡散方程式と非線形分散型方程式の解の挙動 RIMS共同研究(グループ型  2019/02  京都大学数理解析研究所111号室 
    研究代表者北直泰(熊本大学大学院先端科学研究部) 副代表者辻川亨(宮崎大学工学教育研究部), 日時:2019年2月20日(水)13: 30 -2月22日(金)12: 00, 場所:京都大学数理解析研究所111号室,
  • 分化の波の数理モデルとその球面上への拡張  [Invited]
    栄 伸一郎
    反応拡散系と実験の融合 2  2019/02  石川県政記念しいのき迎賓館 セミナールームB  栄伸一郎(北海道大学・理学研究院, 長山雅晴(北海道大学・電子科学研究
     
    日時:2019年2月18日(月)16:00~2月20日(水)18:00 文部科学省委託事業 AIMaP (受託拠点:九州大学 IMI)
  • 質量保存則を持つ反応拡散系におけるパルスの運動  [Not invited]
    栄 伸一郎
    WS 反応拡散系のパターン形成とその応用  2019/02  岡山大学津島キャンパス理学部2号館第9講義室(4階) 
    日程:2019年2月16日-17日 世話人:谷口雅治(岡山大学),下條昌彦(岡山理科大学),物部治徳(岡山大 学)
  • Interaction of non-radially symmetric camphor particles  [Invited]
    EI Shin-Ichiro
    PDE seminar in Ting Hua University  2019/01
  • Interaction of Pulses for Mass-conserved Reaction-diffusion Systems Related to Cell Polarity  [Invited]
    EI Shin-Ichiro
    PDE seminar in Ting Hua University  2019/01
  • 質量保存則を伴う反応拡散モデルにおけるパルスの運動について  [Not invited]
    栄 伸一郎
    函館応用数理解析セミナー  2017/12  公立はこだて未来大学 595 講義室
  • Motion of a pulse for mass conserved reaction-diffusion systems related to cell polarity  [Not invited]
    栄 伸一郎
    PDE seminar  2017/11  Chinese Academy of Science
  • Introduction to the analysis of pulse interaction problems,Introductory Lecture  [Not invited]
    栄 伸一郎
    2017/11  Capital Normal University in Beijing
  • The motion of a spot in two dimensional bounded domain  [Not invited]
    栄 伸一郎
    2017/11  Capital Normal University in Beijing 
    Capital Normal University in Beijing on 10th Nov. 2017
  • Motion of a Pulse for Mass-conserved Reaction-diffusion Systems Related to Cell Polarity  [Not invited]
    栄 伸一郎
    2017 NCTS Workshop on Partial Differential Equations  2017/06  2017 Lecture Room B, 4F, The 3rd General Bldg., NTHU.
  • Motion of a pulse for mass conserved reaction-diffusion systems related to cell polarity  [Invited]
    EI Shin-Ichiro
    MIMS The International Conference on “Reaction-diffusion system,theory and applications"  2017/03  Meiji University (17th, 18th at Nakano Campus, 19th at Surugadai Campus)
  • Motion of pulse solution to a reaction-diffusion system with conservation of mass  [Not invited]
    EI Shin-Ichiro
    Mathematical Analysis on Nonlinear PDEs  2017/01  Tohoku University, Sendai, Japan 
    January 6 - 8, 2017
  • Multi-peak localized solutions for reaction-diffusion systems on two dimensional curved surface  [Invited]
    EI Shin-Ichiro
    The Second Workshop on Differential Geometry and Differential equations  2016/11  Chinese Classics Building, Renmin University of China (on the west to the Library) 
    November 12 - 14,2016
  • Effect of boundaries on the motion of a spot solution in a two dimensional domain  [Not invited]
    EI Shin-Ichiro
    Reaction-Diffusion Systems in Mathematics and Biomedecine  2016/09  illa Clythia, Fr´ejus, France 
    September 19-23, 2016
  • Pulse interaction in modified FitzHugh-Nagumo equations  [Invited]
    EI Shin-Ichiro
    Mathematics of Pattern Formation  2016/09  Mathematical Research and Conference Center in B?dlewo, Poland 
    Thursday Sept. 15, 9:50 - 10:30
  • 心筋細胞における脈動パルスの構成に向けて渦の特徴付け  [Not invited]
    栄 伸一郎
    2016/07  北海道大学理学部4号館5階501室講義室  儀我美一(東京大学)、吉田善章(東京大学)、神保秀一(北海道大学)
     
    開催日時:2016年7月25日(月)~27日(水)
  • Effect of boundaries on the motion of a spot solution in a two dimensional domain  [Not invited]
    EI Shin-Ichiro
    Joint Australia-Japan workshop on dynamical systems with applications in life sciences  2016/07  Brisbane, Queensland, Australia 
    Joint Australia-Japan workshop on dynamical systems with applications in life sciences 18 July - 21 July, 2016, Queensland University of Technology, Brisbane, Queensland, Australia Thursday 21 July: O-603 (level 6, O-block) 9:00am - 10:00am
  • Pulse dynamics of modified FitzHugh-Nagumo equation  [Not invited]
    EI Shin-Ichiro
    仙台応用数学研究集会  2016/03  東北大学川井ホール
  • Pulse dynamics of modified FitzHugh-Nagumo equation  [Not invited]
    EI Shin-Ichiro
    2015 NCTS Workshop on Partial Differential Equations and Applied Mathematics  2015/12  Room B, NCTS, Tsing-Hua University, Hsinchu, Taiwan
  • 不安定化がパターンを生む  [Not invited]
    栄 伸一郎
    第67 回白石記念講座  2015/11  早稲田大学西早稲田キャンパス 63号館 2階会議室  日本鉄鋼協会
  • Shape-dependent motion of interacting camphor  [Not invited]
    EI Shin-Ichiro
    he 16th RIES-Hokudai International Symposium  2015/11  Chateraise Gateaux Kingdom Sapporo (CGKS)
  • Interaction of asymmetric solutions in two dimensional spaces Part I, II  [Not invited]
    EI Shin-Ichiro
    第5回室蘭非線形解析研究会  2015/11  室蘭工業大学 教育・研究2号館(Q棟)4階 数学ゼミナール室(Q402)
  • Pulse dynamics of modified FitzHugh-Nagumo equation  [Not invited]
    EI Shin-Ichiro
    ICMMA 2015, Self-organization, Modeling and Analysis  2015/10  Nakano Campus, Meiji University
  • Shape-dependent motion of interacting camphors:理論と実験 Part I  [Not invited]
    栄 伸一郎
    RIMS研究集会「 生物現象におけるパターン形成と数理」  2015/10  京都大学 数理解析研究所 111号室(京都市左京区北白川追分町)  代表:池田 幸太(明治大学),副代表:鈴木 香奈子(茨城大学)
  • 不安定化がパターンを生む  [Not invited]
    栄 伸一郎
    鉄鋼インフオマティクス研究会第 6回研究会プログラム  2015/09  九州大学伊都キャンパスマスフォインダストリ研究所
  • Pulse dynamics of modified FitzHugh-Nagumo equation  [Not invited]
    EI Shin-Ichiro
    2015 CMC-KMRS Mathematical Biology Conference on Cross-diffusion, chemotaxis,and related problems  2015/07  KAIST (Korea Advanced Institute of Science and Technology)Daejeon, Korea
  • Weak interaction of wavefronts in FitzHugh-Nagumo systems  [Not invited]
    EI Shin-Ichiro
    パターン生成とダイナミクスの解構造の探求  2015/06  北海道大学 学術交流会館
  • 楕円樟脳運動について-Motion of elliptic camphors  [Not invited]
    栄 伸一郎
    2015/03  3-202, the 3rd building of Faculty of Science(Science Bldg #3)
  • 楕円樟脳運動について  [Not invited]
    栄 伸一郎
    北陸応用数理研究会2015  2015/02  金沢大学サテライト・プラザ(金沢市西町教育研修館内)3階集会室  中村健一(金沢大学数物科学系)池田榮雄(富山大学理学研究科)長山雅晴(北海道大学電子科学研究所)
  • Motion of interacting camphors  [Not invited]
    EI Shin-Ichiro
    第1 6 回北東数学解析研究会  2015/02  東北大学理学部川井ホール
  • Motion of interacting camphors  [Invited]
    EI Shin-Ichiro
    第2回拡散に付随する数理科学セミナー  2015/01  九州大学・産学官連携本部産学官連携イノベーションプラザ2階セミナールーム
  • Motion of interacting camphors  [Not invited]
    EI Shin-Ichiro
    2014 NCTS Applied Math. & PDE Seminar  2014/12  Lecture Room B of NCTS 4th Floor, The 3rd General Building, National Tsing Hua University, Taiwan
  • EI Shin-Ichiro
    「数学と現象:Mathematics and Phenomena in Miyazaki 2014」(略称:MPM2014)  2014/11  宮崎大学(木花キャンパス)工学部B棟2階 B209講義室
  • Motion of patterns on a curved surface-曲面上におけるパターンの運動  [Not invited]
    栄 伸一郎
    日本植物学会第78回大会  2014/09  明治大学生田キャンパス 
    細胞・組織における凹凸が生まれる機構とその意義
  • 反応拡散系におけるパルスの相互作用について  [Not invited]
    栄 伸一郎
    語ろう数理解析 8月のセミナー  2014/08  芝浦工業大学 大宮キャンパス 5号館5541教室
  • 化学反応系に現れるスパイラル波への数学的アプローチについて  [Not invited]
    栄 伸一郎
    渦の特徴付け研究集会  2014/07  北海道大学理学部4号館5階501室講義室
  • Pulse dynamics for FitzHugh-Nagumo equation on heterogeneous media  [Not invited]
    EI Shin-Ichiro
    mini-workshop on Modeling, Simulation & Analysis of Pattern Formation  2014/07  Kawai Hall, Tohoku University
  • Pulse dynamics for FitzHugh-Nagumo equation on heterogeneous media  [Not invited]
    EI Shin-Ichiro
    第 1 回 北大 MMC & 旭川医大 L&M 合同セミナー  2014/07  旭川医科大学 講義実習棟 3F, 化学教室内
  • Pulse dynamics in FitzHugh-Nagumosystems on heterogeneous media  [Not invited]
    EI Shin-Ichiro
    Special Session 08 Emergence and Dynamics of Patterns in Nonlinear Partial Differential Equations from Mathematical Science  2014/07  Madrid, Spain, The Universidad Aut´onoma de Madrid (UAM)
  • Interaction of deformed pulses in two dimensional spaces  [Not invited]
    栄 伸一郎
    第26回HMMCセミナー  2014/05  北海道大学電子科学研究所5階講義室
  • 反応拡散系における解の様々な挙動について  [Not invited]
    栄 伸一郎
    北海道大学第1回数学教室談話会  2014/05  北海道大学理学研究院 若手研究者交流室)
  • Dynamics of localized solutions for reaction-diffusion systems in two dimensional domains  [Not invited]
    EI Shin-Ichiro
    首都大学東京解析セミナー  2014/02  首都大学東京
  • Motion of pulses for FitzHugh-Nagumo equation on heterogeneous media  [Not invited]
    EI Shin-Ichiro
    非線形問題に現れる特異性の解析 (SNP2013Winter)  2014/01  関西セミナーハウス
  • Dynamics of pulses for FHN on heterogeneous media  [Not invited]
    EI Shin-Ichiro
    反応拡散系のパターンダイナミクス  2013/11  富山大学理学部多目的ホール
  • 進行パルスの領域依存性について  [Not invited]
    栄 伸一郎
    第8回 金沢解析セミナー (Kanazawa Analysis Seminar)  2013/11  金沢大学自然科学5号館 コロキウム室 3(数学・管理棟 4階471)
  • Dynamics of Localized Solutions for Reaction-Diffusion Systems on Curved Surface  [Not invited]
    EI Shin-Ichiro
    2013 NIMS-KMRS PDE Conference on reaction diffusion equations for ecology and related problems  2013/10  KAIST(Korea Advanced Institute of Science and Technology Daejeon, Korea
  • Dynamics of Localized patterns for Reaction-Diffusion Systems on a Curved Surface  [Not invited]
    栄 伸一郎
    2013/10  彰化大学
  • 2次元領域におけるスポット解の運動について  [Not invited]
    栄 伸一郎
    日本応用数理学会2013年度年会  2013/09  アクロス福岡 4F 国際会議場
  • Dynamics of Localized patterns for Reaction-Diffusion Systems on a Curved Surface  [Not invited]
    EI Shin-Ichiro
    Workshop on Mathematical Modelling and Analysis in the Life Sciences  2013/06  Carry-le-Rouet, France
  • Dynamics of Localized Solutions for Reactiondiffusion Systems on Curved Surface  [Not invited]
    EI Shin-Ichiro
    IMA Special Workshop Joint US-Japan Conference for Young Researchers on Interactions among Localized Patterns in Dissipative Systems  2013/06  IMA Keller Hall 3-180
  • 栄 伸一郎
    ミニシンポジウム「植物の遺伝子発現の移動波パターンの実験と数理」  2012/11  理化学研究所 本館5階 セミナー室(535,537)
  • Renormalization-Group approach to the movement of interacting pulses  [Not invited]
    EI Shin-Ichiro
    くりこみ群の応用とその周辺  2012/09  富山大学五福キャンパス 理学部 B121
  • Dynamics of localized solutions for reaction-diffusion systems on two dimensional domain,Nonlinear Partial Differential Equations,Dynamical Systems and Their Applications{in honor of Professor Hiroshi Matano on the occasion of his 60th birthday  [Not invited]
    EI Shin-Ichiro
    2012/09  Room 420, Research Institute for Mathematical Sciences, Kyoto University
  • Dynamics of localized solutions for reaction-diffusion systems in two-dimensional domains  [Not invited]
    EI Shin-Ichiro
    Turing Symposium on Morphogenesis--Mathematical Approaches Sixty Years after Alan Turing  2012/08  仙台国際センター
  • 無限次元空間における弛緩振動  [Not invited]
    栄 伸一郎
    京都駅前セミナー~非線形現象の数理を考える~  2012/02  キャンパスプラザ京都 6階第7講習室(JR 京都駅ビル駐車場西側 京都郵便局西側)
  • Infinite dimensional relaxation oscillation in a two mode randomly walking model with growth  [Not invited]
    EI Shin-Ichiro
    「科学計算の信頼性とその周辺に関するワークショップ」(Workshop on reliability in scientific computing and related topics)  2011/11  長崎県佐世保市(西海パールシーリゾート内の施設)
  • 栄 伸一郎
    非線形ダイナミクスからのアプローチ  2011/11  東京大学大学院数理科学研究科 
    総合討論者として講演
  • Infinite dimensional relaxation oscillation  [Not invited]
    EI Shin-Ichiro
    LOCALIZED MULTI-DIMENSIONAL PATTERNS IN DISSIPATIVESYSTEMS: THEORY, MODELING, AND EXPERIMENTS  2011/07  BIRS, Banff, Canada
  • パターン形成の数理的メカニズムについて  [Not invited]
    栄 伸一郎
    首都大・大学院GP事業連携プロジェクト「非線形システムにおけるパターン形成と制御の数理モデル・数値シミュレーション」  2011/06  首都大学東京
  • Dynamics of pulses in two dimensional thin domain  [Not invited]
    EI Shin-Ichiro
    The 3rd Kyushu University-POSTECH Joint Workshop- Partial Differential Equations and Fluid Dynamics  2011/06  POSTEC, Korea
  • Dynamics of pulses in two dimensional thin domain  [Not invited]
    EI Shin-Ichiro
    Far-From-Equilibrium Dynamics  2011/01  京都大学 数理解析研究所および芝蘭会館
  • Dynamics of pulses in two dimensional thin domains  [Not invited]
    EI Shin-Ichiro
    「非線形問題に現れる特異性の解析 (SNP2010)」  2010/11  関西セミナーハウス,京都市左京区一乗寺竹ノ内町23
  • 細い領域上におけるパルス解の運動について  [Not invited]
    栄 伸一郎
    「数値解析と計算の信頼性評価」  2010/11  ハウステンボス ユトレヒト第5会議室
  • 境界条件がダイナミクスに与える影響について  [Not invited]
    栄 伸一郎
    非線形数理レクチャーシリーズ,2010  2010/06  東北大学理学部数理科学記念館(川井ホール)24号室
  • 周期軌道に対する位相方程式の導出についての考察  [Not invited]
    栄 伸一郎
    第9回機械工学における力学系理論の応用に関する研究会  2010/03  慶應義塾大学理工学部(矢上キャンパス)セミナールーム3(14棟2階203室)
  • The effect of boundary conditions to the pulse dynamics  [Not invited]
    EI Shin-Ichiro
    ミニワークショップ「反応拡散系をめぐる最近の話題」  2010/02  京都産業大学12号館4F12421号室
  • The effect of boundary conditions to the dynamics of pulse solutions for reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    2009/12  数学教室 彰化師範大学 (Changua University) 台湾
  • Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    「微分方程式の総合的研究」  2009/12  東京大学大学院数理科学研究科 大講義室および056号室
  • The effect of boundary conditions to the pulse dynamics  [Not invited]
    EI Shin-Ichiro
    「第五回 非線型の諸問題」  2009/09  長崎商工会議所 第一第二会議室
  • The effect of boundary conditions to the dynamics of pulse solutions for reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    第34回偏微分方程式論札幌シンポジウム  2009/08  北海道大学理学部5号館大講義室 (203号室)
  • The dynamics of boundary spikes for reaction-diffusion systems in 2D  [Not invited]
    EI Shin-Ichiro
    2nd International conference on Reaction-diffusion systems and viscosity solutions  2009/07  Department of applied mathematics, Providence University, Taiwan
  • 自己複製ダイナミクスの数理  [Not invited]
    栄 伸一郎
    RIMS研究集会, 散逸系の数理 -パターンを表現する漸近解の構成-  2009/06  京都大学数理解析研究所420号室
  • The effect of boundary conditions to the pulse dynamics  [Not invited]
    EI Shin-Ichiro
    Reaction-Diffusion Systems: Modeling and Analysis  2009/06  ReaDiLab Conference in Orsay (France)
  • Dynamics of boundary spikes for Gierer-Meinhardt model in 2D  [Not invited]
    EI Shin-Ichiro
    Verified Computation of Solutions for Partial Differential Equations and Related Topics  2009/05  The Hong Kong Polytechnic University
  • Interaction of deformed pulses in two dimensional spaces  [Not invited]
    EI Shin-Ichiro
    非線形問題に現れる特異性の解析 (SNP2008)  2008/12  関西セミナーハウス,京都市左京区一乗寺竹ノ内町23
  • 不均一拡散場におけるフロント解のダイナミクスについて  [Not invited]
    栄 伸一郎
    友枝先生還暦記念研究集会  2008/11  神戸インスティチュート
  • Motion of a transition layer in heterogeneous environment  [Not invited]
    EI Shin-Ichiro
    九州大学数値解析セミナー (Q-NA)  2008/11  金沢市大手町 2-23 KKRホテル金沢
  • The motion of a transition layer for a bistable reaction diffusion equation in one dimensional space with heterogeneous environment,Mathematical Understanding of Complex Systems arising in Biology and Medicine  [Not invited]
    EI Shin-Ichiro
    CNRS Japan-France LIA ReaDiLab  2008/08  明治大学紫紺館, 神田 - お茶の水, 中央区, 東京
  • Dynamics of Pulses Constructed by Front Interaction  [Not invited]
    EI Shin-Ichiro
    NSCセミナー  2008/08  北海道大学電子科学研究所
  • 周期解の位相ダイナミクスの導出法とその応用  [Not invited]
    栄 伸一郎
    日本数学会応用数学特別セッション 「結合振動子系の数理」 -力学系としての構造解明と応用を目指して-  2008/03  近畿大学本部キャンパス 17号館304号室(第VII会場) 
    日本数学会年会
  • The dynamics of spikes along boundaries in two dimensional space  [Not invited]
    EI Shin-Ichiro
    首都大学東京 数理解析小研究集会  2008/03  首都大学東京(南大沢キャンパス) 8号館 6階 610号室
  • 「非線形偏微分方程式系におけるマルチスケール現象の数理」  [Not invited]
    栄 伸一郎
    第三回 九州大学 産業技術数理研究センター ワークショップ [兼 第三回 連成シミュレーションフォーラム] 「自然現象における階層構造と数理的アプローチ」  2008/03  九州大学 情報基盤研究開発センター 3階 多目的講習室 
    Hierarchical Structures in Nature: how we can approach them in mathematics
  • 埼玉大学数学教室集中講義 数学特別講義 XI および解析学特論 VI  [Not invited]
    栄 伸一郎
    2008/01  埼玉大学 
    2008.1.21 - 24.
  • Boundary spikes for reaction-diffusion systems II  [Not invited]
    EI Shin-Ichiro
    Dynamics of boundary spikes, Workshop 非線形問題に現れる特異性の解析 SNP2007  2007/11  関西セミナーハウス (京都)
  • 反応拡散系におけるパターンダイナミクス  [Not invited]
    栄 伸一郎
    ミニシンポジウム「生物系の理論考察のための数学的手法」  2007/10  京都大学数理解析研究所4F420室  三村昌泰
     
    研究集会「生物数学の理論とその応用」
  • The dynamics of boundary spikes for reaction-diffusion systems in space dimension 2  [Not invited]
    EI Shin-Ichiro
    Mathematical modeling and analysis in biological and chemical systems  2007/09  ReaDiLab Conference in Orsay & IHES (France)
  • Interface Equations for Reaction-Diffusion Systems Near Critical Point  [Not invited]
    EI Shin-Ichiro
    SIAM Conference on Applications of Dynamical Systems  2007/05  Snowbird 
    MS70 Theory and Applications of Renormalization Group Methods
  • 緩く曲がった境界上のパルス解の運動について  [Not invited]
    栄 伸一郎
    京都大学理学部数学談話会  2007/04  京都大学
  • On the validity of mean curvature flow for weakly curved interfaces in reaction-diffusion systems with balanced bistable nonlinearity  [Not invited]
    EI Shin-Ichiro
    関数方程式セミナー  2007/01  九州大学六本松キャンパス 4号館3階313号室
  • Dynamics of Pulses Constructed by Front Interaction  [Not invited]
    EI Shin-Ichiro
    Internal conference on RD and Viscosity solutions  2007/01  Providence University, Taiwan
  • Interface Equations for Reaction-Diffusion Systems Near Critical Point  [Not invited]
    EI Shin-Ichiro
    Workshop on Reaction-Diffusion: Theory & Applications  2006/12  Lecture Room: M210, Math Building, NTNU (Ting Chou Road’s Campus)
  • 横浜市大学生セミナー  [Not invited]
    栄 伸一郎
    2006/11  横浜市立大学理科館4F大演習室
  • Front dynamics in reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    京都解析コロキウム  2006/10  京都大学理学部1号館5F516号室
  • 反応拡散系における解のさまざまな挙動について 及びパルス解ダイナミクスへの理論的アプローチ  [Not invited]
    栄 伸一郎
    東北大学理学研究科大学院GPプログラム  2006/10 
    サーベイレクチャーズ(非線形の解析) 10/11、10/13
  • Dynamics of front solutions in heterogeneous media  [Not invited]
    EI Shin-Ichiro
    the Conference "Dynamics of nonlinear waves"  2006/04  Groningen University, Groningen
  • The dynamics of boundary spikes for reaction-diffusion systems in space dimension 2  [Not invited]
    EI Shin-Ichiro
    埼玉大学数学教室談話会  2006/01  埼玉大学
  • Dynamics of front solutions in heterogeneous media  [Not invited]
    EI Shin-Ichiro
    龍谷数理科学セミナー  2005/12  龍谷大学理工学部1号館534号室 滋賀県大津市瀬田
  • Dynamics of front solutions of reaction-diffusion systems with bistable nonlinearity  [Not invited]
    EI Shin-Ichiro
    国際研究集会「Mathematical analysis of complex phenomena in life sciences」  2005/10  東京大学大学院数理科学研究科棟大講義室
  • 反応拡散系におけるパルスの相互作用について  [Not invited]
    栄 伸一郎
    日本数学会秋季大会企画特別講演  2005/09  岡山大学
  • The motion of fronts in heterogeneous reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    2005/08  Providence University, Taiwan
  • A Variational Approach to Singular Perturbation Problems  [Not invited]
    EI Shin-Ichiro
    2005/08  数学教室 彰化師範大学
  • Interacting pulses in reaction diffusion systems  [Not invited]
    EI Shin-Ichiro
    2005/08  数学教室 彰化師範大学
  • パターンを数理的に見る  [Not invited]
    栄 伸一郎
    公開講座「現代数学入門  2005/08  九州大学 箱崎キャンパス 国際ホール
  • Dynamics of Turing patterns for reaction-diffusion systems in a cylindrical domain on 2D  [Not invited]
    EI Shin-Ichiro
    2005/08  Feng Chia University,Taiwan
  • Dynamics of spiral solutions for reaction-diffusion systems with bistable nonlinearity  [Not invited]
    EI Shin-Ichiro
    第14回日本数学会国際研究集会「漸近解析と特異性」  2005/07  仙台国際ホールセンター
  • A variational approach to singular perturbation problems  [Not invited]
    EI Shin-Ichiro
    金沢HMCセミナー  2004/11  金沢大学サテライトプラザ3階講義室
  • Dynamics of pulse solutions in reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    「非線形波動の物理と数理構造」  2004/11  九州大学筑紫地区総合研究棟(C-CUBE) 1F 筑紫ホール
  • Dynamics of patterns in reaction-diffusion systems on two dimensions  [Not invited]
    EI Shin-Ichiro
    Nonlinear PDE symposium  2004/11  台湾 Academia Sinica
  • A variational approach to singular perturbation problems  [Not invited]
    EI Shin-Ichiro
    2004/11  台湾 清宣大学応用数学教室
  • Dynamics of Turing patterns for reaction-diffusion systems in a cylindrical domain on 2D  [Not invited]
    EI Shin-Ichiro
    「Hyperbolic problems, Theory, Numerics, Applications」  2004/09  万博記念会場
  • 反応拡散方程式系に現れるパルスの挙動  [Not invited]
    栄 伸一郎
    九州大学物理学セミナー  2004/07  九州大学 理学部2号館1F
  • Dynamics of Turing patterns in cylindrical domains on 2D  [Not invited]
    EI Shin-Ichiro
    京都大学数理解析研究所研究集会「流体と気体の数学解析」  2004/07  京都大学数理解析研究所4階420号室
  • 反応拡散方程式系に現れるパターンのダイナミクス  [Not invited]
    栄 伸一郎
    神戸大学理学部解析セミナー  2004/07  神戸大学
  • Dynamics of Turing patterns in cylindrical domains on 2D  [Not invited]
    EI Shin-Ichiro
    NCTS 2004 Workshop on Reaction-Diffusion Equations and Related Topics  2004/05  Lecture Room A of NCTS, 4th Floor, The 3rd General Building National Tsing Hua University, Hsinchu.Taiwan
  • 散逸構造特論  [Not invited]
    栄 伸一郎
    横浜市立大学総合理学研究科集中講義  2004/05  横浜市立大学
  • 反応拡散方程式系に現れるパルスの挙動  [Not invited]
    栄 伸一郎
    九州大学関数方程式セミナー  2004/04  九州大学 六本松分室・4号館3階313号室
  • Dynamics of Turing Patterns for Reaction-Diffusion Systems in a Cylindrical Domain in 2D  [Not invited]
    EI Shin-Ichiro
    Mathematical Understanding of Invasion Processes in Life Sciences  2004/03  CIRM, Luminy, France
  • 2次元帯状領域におけるTuringパターン  [Not invited]
    EI Shin-Ichiro
    Hakozaki Workshop on Applied and Numerical Analysis  2004/01  九州大学理学部3号館1F3110, 3112号室
  • 2次元帯状領域におけるパターンの運動  [Not invited]
    栄 伸一郎
    反応拡散方程式系におけるパターン形成と漸近的幾何構造の研究  2003/10  京都大学数理解析研究所 1F115号室  代表 坂元 国望
     
    副代表
  • The dynamics of patterns for reaction-diffusion systems in a cylindrical domain in 2D  [Not invited]
    EI Shin-Ichiro
    盛岡 応用数学 小研究集会  2003/10  岩手大学 人文社会科学部 1号館2階 会議室
  • The dynamics of patterns for reaction-diffusion systems in a cylindrical domain in 2D  [Not invited]
    EI Shin-Ichiro
    BIRS Workshops: Defects and their Dynamics and Localization Behavior in Reaction-Diffusion Systems and Applications to the Natural Sciences  2003/08  Banff Center Banff Canada
  • 周期解の新しい取り扱い方  [Not invited]
    栄 伸一郎
    第8回現象数理学セミナー  2003/06  広島大学理学部棟A124室
  • 元シリンダー領域におけるパターンの運動について  [Not invited]
    EI Shin-Ichiro
    Hiroshima Mathematical Analysis Seminar No.60  2003/06  広島大学理学部 B707
  • 2次元シリンダー領域におけるパターンの運動について  [Not invited]
    栄 伸一郎
    応用解析セミナー  2003/04  東京大学 数理科学研究科棟(駒場)122号室
  • 反応拡散型方程式に現れるパターンとその運動  [Not invited]
    栄 伸一郎
    2003/03  慶応大学先端生命研究所
  • パルス解の色々な挙動について - New Billiard Problem -  [Not invited]
    栄 伸一郎
    第20回九州における偏微分方程式研究集会  2003/01  九州大学国際交流ホール
  • A new type of the Billiard problem arising from reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    Workshop on Dynamics of Nonlinear waves  2003/01  Oberwolfach, Germany
  • Dynamics of patterns in reaction-diffusion systems and the related topics  [Not invited]
    EI Shin-Ichiro
    京都大学数理解析研究所共同研究集会  2002/11 
    研究代表者 11/25-11/28
  • 反応拡散方程式系におけるパルス状局在解のダイナミクス I, II  [Not invited]
    栄 伸一郎
    関数方程式と数理モデル  2002/11  京都大学 数理解析研究所 115号室
  • Dynamics of Pulses in Reaction-Diffusion Systems  [Not invited]
    EI Shin-Ichiro
    Development of numerical nethods for dynamics of interfaces and its applications to experiments in science and Engineering II  2002/07  神戸インスティチゥート
  • Pulse dynamics near a critical point in reaciton-diffusion systems  [Not invited]
    EI Shin-Ichiro
    Workshop on "Singular limit analysis of reaciton-diffusion systems  2002/07  L'Aquila Univ. L'Aquila Italy
  • Dynamics of pulses in reaciton-diffusion systems  [Not invited]
    EI Shin-Ichiro
    材料科学におけるパターン形成の数理 研究会  2002/06  広島大学学士会館(会議室 I)
  • 特異点近傍におけるパルス解の挙動について  [Not invited]
    栄 伸一郎
    非線形現象の解析:実験と数理解析  2002/03  数理解析研究所
  • Dynamics of pulse-like localized pattern in higher dimension  [Not invited]
    EI Shin-Ichiro
    Traveling waves: Theory and Applications  2001/10  神戸インスティチュート
  • パルス状局在パターンのダイナミクスについて  [Not invited]
    栄 伸一郎
    非線形数理」秋の学校  2001/09  東工大 大岡山キャンパス西8号館W1008号室
  • Pulse dynamics approach to the analysis on the self-replicating behavior  [Not invited]
    EI Shin-Ichiro
    Patterns and Waves - Mathematics and NonlinearChemistry  2001/08  Lorentz Center Leiden
  • Invariant manifold and its application to the pulse dynamics  [Not invited]
    EI Shin-Ichiro
    Workshop on "Asymptotics and Dynamics in Nonlinear Diffusive Systems  2001/06  龍谷大学瀬田キャンパス REC棟小ホール
  • 反応拡散方程式系に現れる局在解の運動について  [Not invited]
    栄 伸一郎
    日本数学会年会 函数方程式論分科会特別講演  2001/03  慶応義塾大学理工学部第Ⅱ会場
  • Dynamics of pulses in reaction-diffusion systems,Singular limits of reaction-diffusion systems: Interfaces and spikes  [Not invited]
    EI Shin-Ichiro
    2001/03  Lorentz Center, Leiden, Holland
  • Minisynposium on nonlinear dynamics and dissipative systems  [Not invited]
    EI Shin-Ichiro
    2001/02  北海道大学電子科学研究所 5F N502号室
  • 反応拡散系におけるパルス解のダイナミクスについて  [Not invited]
    栄 伸一郎
    文部省科学研究費特定領域研究(B)11214101公開シンポジウム  2001/02  東京大学数理科学研究科大講堂
  • 反応拡散方程式系に現れる局在解の挙動について  [Not invited]
    栄 伸一郎
    東京工業大学数学教室セミナー 解析セミナー  2000/12  東京工業大学 本館H224A
  • Dyanamics of pulse solutions in reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    「非線形問題に現れる特異性の解析 2000」  2000/12  関西セミナーハウス
  • 反応拡散方程式系に現れる局在解の運動について  [Not invited]
    栄 伸一郎
    「界面現象に対する実験解析・数値解析・数学解析についてII」  2000/11  神戸インスティチュート
  • 反応拡散方程式のパルス解の挙動について  [Not invited]
    栄 伸一郎
    東京工業大学数学教室セミナー 大岡山談話会  2000/11  東京工業大学 本館H334室
  • 反応拡散方程式に現れる局在解のダイナミクス  [Not invited]
    栄 伸一郎
    日本応用数理学会特別講演  2000/10  東京工大西3号館
  • Dynamics of localized solutions in reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    The first east Asia Symposium on Nonlinear PDE  2000/09  国際高等研究所
  • Dynamics of interacting pulses in reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    Organized session "Pulse dynamics in dissipative systems"  2000/08  Pacific RIM dynamical systems conference, Maui Marriott Resort
  • Pulse dynamics of reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    「非線形拡散系-ダイナミクスと漸近解析」  2000/05  京都大学数理解析研究所420 号室
  • Pulse dynamics approach to self-replicating patterns  [Not invited]
    EI Shin-Ichiro
    台湾国立中央大学数学系 専題演講  2000/05  台湾国立中央大学鴻経館一楼107室
  • The dynamics of pulses on reaction-diffusion systems II  [Not invited]
    EI Shin-Ichiro
    NCTS Seminar  2000/05  台湾国立精華大学総合3号館4F NCTS 演講廊
  • Dynamics of pulses for reaction-diffusion systems in higher dimensional space  [Not invited]
    EI Shin-Ichiro
    2000/05  台湾国立交通大学(NCTU) Science Building I Room 223
  • The dynamics of pulses on reaction-diffusion systems I  [Not invited]
    EI Shin-Ichiro
    NCTS Seminar  2000/05  台湾国立精華大学総合3号館4F NCTS 演講廊
  • Dynamics of pulses for reaction-diffusion systems in higher dimensional space  [Not invited]
    EI Shin-Ichiro
    台大理論科学中心 台大数学系演講  2000/05  台湾国立台湾大学数学系新数館308号室
  • The dynamics of interfaces in the scalar reaction-diffusion equations I&II  [Not invited]
    EI Shin-Ichiro
    NCTS Seminar  2000/04  台湾国立精華大学総合3号館4F NCTS 演講廊
  • Dynamics of interacting pulses in reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    Equations aux Derivees Partielles Non Lineaires Frontieres libres,Interfaces et Singularites  2000/03  パリ南大学
  • Pulse interaction and its application to bifurcation problems  [Not invited]
    EI Shin-Ichiro
    富山大学理学部数学科談話会  2000/02
  • 反応拡散系におけるパルスの相互作用と運動  [Not invited]
    栄 伸一郎
    特定研究領域 (B)公開シンポジウム  2000/01  東京大学数理科学科大講堂
  • The dynamics of spike solutions for reaction-diffusion systems in two dimensional space  [Not invited]
    EI Shin-Ichiro
    IMS Workshop on Reaction-Diffusion Systems  1999/12  The Chinese University of Hong Kong
  • 2次元領域におけるパルスの相互作用について  [Not invited]
    栄 伸一郎
    研究集会 非平衡系の秩序形成と崩壊の数理  1999/11  宮崎大学工学部
  • The dynamics of pulses for reaction-diffusion systems in higher dimensional space  [Not invited]
    栄 伸一郎
    Workshop 非線形問題に現れる特異性の解析 '99  1999/11  関西セミナーハウス
  • 反応拡散方程式に現れるパルス解の弱い相互作用について  [Not invited]
    栄 伸一郎
    応用解析セミナー summer school  1999/09  草津セミナーハウス
  • Renormalization-group Method for Reduction of Evolution Equations  [Not invited]
    EI Shin-Ichiro
    ミニワークショップ 「近可積分系の応用数理」  1999/07  龍谷大学理工学部数理情報学科1号館534号室
  • 反応拡散方程式とパターンダイナミクス  [Not invited]
    栄 伸一郎
    総合数理セミナー'99  1999/07  広島大学総合科学部数理情報科学コース C棟808号室
  • Pulse-interaction approach to self-replicating dynamics in reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    大阪大学理学研究科数学教室微分方程式セミナー  1999/07  大阪大学理学部大セミナー室(E301)
  • Dynamics of Metastable Localized Patterns and its Application to the Interaction of Spike Solutions for The Gierer-Meinhardt System in 2 dimensinal space  [Not invited]
    EI Shin-Ichiro
    東京大学数理科学研究科応用解析セミナー  1999/07  数理科学研究科棟(駒場)123号室
  • Renormalization-group Method for Reduction of Evolution Equations; invariant manifolds and envelopes  [Not invited]
    EI Shin-Ichiro
    Euroconference:"Dynamics of Patterns"  1999/06  Anogia Academic village, Crete
  • On the dynamics of spike solutions in pattern formation model equations on 2 dimensional domains  [Not invited]
    EI Shin-Ichiro
    第3回 広島数理解析セミナー(1999年度)  1999/05  広島大学理学部 B707,
  • Pulse-interaction approach to self-replicating dynamics in reaction-diffusion sytems  [Not invited]
    EI Shin-Ichiro
    Differential Equations Seminar  1999/03  The University of Tennessee Ayres Hall ROOM 214
  • Pulse-dynamics approach to self-replicating patterns  [Not invited]
    EI Shin-Ichiro
    Special NSC Seminar on Nonlinear Dynamic  1999/01  北海道大学電子科学研究所 N502号室
  • The motion of weakly interacting pulses in reaction-diffusion systems - from the self-replicating phenomena point of view  [Not invited]
    EI Shin-Ichiro
    Recent Topics in Nonlinear PD  1999/01  東北大学理学部川井ホール
  • Motion of weakly interacting pulses in reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    Reaction-Diffusion Systems:Theories and Applications  1998/12  広島大学理学部B棟707号室
  • The motion of weakly interacting pulses in reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    PDE seminar  1998/10  Department of Mathematics The Chinese University of Hong Kong, Room 222B, Lady Shaw Building
  • The dynamics of pulses in reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    Workshop on Nonlinear Partial Diffusion Equations and Related Topics, Ryukoku '98  1998/06
  • 反応拡散方程式に現れるパルスの相互作用について  [Not invited]
    栄 伸一郎
    東大応用解析セミナー  1998/06  東大数理科学研究科 数理科学棟117号室
  • 散逸系に現れる孤立波の運動について  [Not invited]
    栄 伸一郎
    非線形数理集中セミナー  1998/05  東京工業大学 大岡山キャンパス本館3階
  • A three partition problem arising from competition-diffusion systems  [Not invited]
    EI Shin-Ichiro
    First Pacific RIM Conference on Mathematics  1998/01  Applied PDE session, City University of Hong Kong, Hong Kong
  • A three partition problem arising from competition-diffusion systems  [Not invited]
    EI Shin-Ichiro
    Workshop on Singularities Arising in Nonlinear Problems  1997/11  神戸インスティチュート
  • A three partition problem arising from competition-diffusion systems  [Not invited]
    EI Shin-Ichiro
    Internatinal Conference on Asymtotics in Nonlinear Diffusion Systems  1997/07  東北大学理学部河合ホール
  • パルス相互作用と繰り込み群法  [Not invited]
    栄 伸一郎
    龍谷大学応用数理セミナー  1997/07  龍谷大学理工学部数理情報科1号館534号室
  • A three partition problem arising from competition-diffusion systems  [Not invited]
    EI Shin-Ichiro
    広島大学NNAセミナー  1997/06
  • A three partition problem arising from competition-diffusion systems  [Not invited]
    EI Shin-Ichiro
    非線形数理セミナー  1997/05  東京大学駒場キャンパス大学院数理科学研究科新館122号室
  • The Equation of Motion for Interacting Pulses  [Not invited]
    EI Shin-Ichiro
    SFU's Applied Mathematics Seminar  1996/11  Room K9509, SFU CAMPUS
  • Equations of Motions for Interacting Pulses  [Not invited]
    EI Shin-Ichiro
    Applied Mathematics Colloquium  1996/09  Old Computer Science Building Room 301, Institute of Applied Mathematics,UBC
  • Slow dynamics of interfaces intersecting the boundary in a strip-like domain  [Not invited]
    EI Shin-Ichiro
    「非線形問題における漸近的方法」  1996/01  京都アピカルイン及びかんぽーる京都
  • 二次元管状領域における界面の運動について  [Not invited]
    栄 伸一郎
    界面方程式と特異摂動問題  1995/11  広島電機大学1号館3階会議室
  • 管状領域における界面の運動  [Not invited]
    栄 伸一郎
    管状領域における界面の運動  1995/10  大阪工業大学60周年記念館城北研修センター
  • 2次元管状領域における界面の運動  [Not invited]
    栄 伸一郎
    東京大学数理科学研究科俣野研応用解析サマースクール  1995/10  群馬県 草津セミナーハウス
  • 管状領域における界面の運動  [Not invited]
    栄 伸一郎
    阿波ワークショップ'95「第3回先端技術における数理モデル解析」  1995/08  徳島大学 総合科学部一会議室
  • 神経線維モデルにおけるパルス相互作用について  [Not invited]
    栄 伸一郎
    九州における偏微分方程式研究集会  1995/02  九州大学箱崎キャンパス 九州大学国際ホール
  • 反応拡散方程式に現れる界面の運動方程式について  [Not invited]
    栄 伸一郎
    非線形問題における漸近解析的方法の研究会  1995/01  東京大学本郷キャンパス5号館103号室
  • 神経線維モデルにおけるパルスの相互作用について  [Not invited]
    栄 伸一郎
    1994年度応用数学合同研究集会  1994/12  龍谷大学瀬田キャンパスRECHAL
  • 神経線維モデルにおけるパルスの相互作用について  [Not invited]
    栄 伸一郎
    応用解析セミナー  1994/12  東京大学本郷キャンパス5号館403号室
  • Equation of motion for interacting pulses  [Not invited]
    EI Shin-Ichiro
    日中シンポジウム  1994/10  中華人民共和国上海市復旦大学
  • 神経線維モデルにおけるパルス相互作用について  [Not invited]
    栄 伸一郎
    非線形数理セミナー  1994/10  東京大学駒場キャンパス第1研究室212号室
  • 複数のソリトンの相互作用についてーphase dynamics法の視点からー  [Not invited]
    栄 伸一郎
    非線形可積分系による応用解析  1994/07  京都大学数理解析研究所 
    数理解析研究所短期共同研究
  • 無限可積分系の縮退化について  [Not invited]
    栄 伸一郎
    重点領域「無限可積分系」城崎ワークショップ、日本数学若手セミナー 無限自由度の可積分系とその周辺  1994/06  兵庫県立城崎大会議室
  • ソリトン間の相互作用とphase dynamics  [Not invited]
    EI Shin-Ichiro
    東京大学駒場戸田セミナー  1994/04
  • Stability of stationary interfaces with contact angle in a generalized mean curvature flow  [Not invited]
    EI Shin-Ichiro
    東海大学談話会  1994/02  東海大学理学部(共同研究室)
  • Stability of stationary interfaces with contact angle in a generalized mean curvature flow  [Not invited]
    EI Shin-Ichiro
    偏微分方程式仙台研究集会  1994/01  東北大学理学部数学教室
  • Stability of stationary interfaces with boundaries in a generalized mean curvature flow  [Not invited]
    EI Shin-Ichiro
    第43回応用力学連合講演会 (Japan NCTAM)  1994/01 
    オーガナイズドセッション「界面現象の数理」 日本学術会議
  • Stability of stationary interfaces with boundaries in a generalized mean curvature flow  [Not invited]
    EI Shin-Ichiro
    界面及びパターン形成の数理  1994/01  東京工業大学理学部数学教室
  • Stability of stationary interfaces in a generalized mean curvature flow  [Not invited]
    EI Shin-Ichiro
    JAMI SEMINAR -FALL 1993  1993/11  Department of Mathematics Johns Hopkins University (USA)
  • 形態形成の数理  [Not invited]
    栄 伸一郎
    横浜市大総合科目9  1993/10  横浜市大カメリアホール
  • Dynamics of interfaces in competition-diffusion systems  [Not invited]
    EI Shin-Ichiro
    日本数学会秋期総合分科会応用数学一般講演  1993/09  大阪府立大学
  • The stability of stationary interfaces in generalized mean curvature flow with boundaries  [Not invited]
    EI Shin-Ichiro
    広島大学応用解析セミナー  1993/09  広島大学理学部数学教室 応用解析研究室
  • 神経パルス方程式におけるパルスインターラクションについて  [Not invited]
    栄 伸一郎
    C&Aサマーセミナー  1993/07  大阪工業大学城北研修センター
  • Stability of stationary interfaces in a generalized mean curvature flow  [Not invited]
    EI Shin-Ichiro
    応用解析セミナー  1993/05  東京大学大学院数理科学研究科、東京大学理学部5号館403号室
  • 数学で解析する生物社会  [Not invited]
    栄 伸一郎
    横浜市大総合科目9  1992/11  横浜市大カメリアホール
  • Dynamics of interfaces of reaction-diffusion equations in inhomogeneous media  [Not invited]
    EI Shin-Ichiro
    Workshop on Dynamical Systems,Theory and its Applications  1992/11  京大会館212号室
  • Dynamics of interfaces of reaction-diffusion equations in inhomogeneous media  [Not invited]
    EI Shin-Ichiro
    界面、層ダイナミクスの数理  1992/10  京都大学数理解析研究所
  • Interfacial dynamics arising from some reaction-diffusion equations  [Not invited]
    EI Shin-Ichiro
    応用解析セミナー  1992/06  広島大学理学部数学教室応用解析学研究室
  • Interfacial dynamics arising from some reaction-diffusion equations  [Not invited]
    EI Shin-Ichiro
    Seta Seminar on Mathematical Analysis  1992/06  龍谷大学理工学部数理情報学科
  • ある反応拡散方程式に現れる界面ダイナミクスについて  [Not invited]
    栄 伸一郎
    1992/06  東京都立大学 理675号室
  • ある反応拡散方程式に現れる界面ダイナミクスについて  [Not invited]
    栄 伸一郎
    応用解析研究会  1992/05  早稲田大学理工学部
  • 異方性を持った反応拡散方程式に現れる界面の動きについて  [Not invited]
    栄 伸一郎
    応用解析セミナー  1992/05  東京大学大学院数理科学研究科
  • Effect of Domain-shape on Combustion Processes  [Not invited]
    EI Shin-Ichiro
    DNPセミナー  1991/06  龍谷大学理工学部
  • Oscillations in Chemotaxis Model  [Not invited]
    EI Shin-Ichiro
    「生物界における形の形成」  1991/03  基礎生物学研究所(岡崎市) 
    平成2年度共同研究
  • Effect of Domain-shape on Combustion Processes  [Not invited]
    EI Shin-Ichiro
    非線形偏微分方程式  1991/01  京都大学数理解析研究所
  • 多重スケール法とその応用  [Not invited]
    栄 伸一郎
    日本数学会応用数学特別講演  1990/09  埼玉大
  • On fast and slow motions in reaction diffusion systems  [Not invited]
    EI Shin-Ichiro
    偏微分方程式セミナー  1990/07  福岡大理
  • 燃焼問題に現れる弛緩振動について  [Not invited]
    栄 伸一郎
    九州における偏微分方程式研究集会  1990/02  佐賀大理工
  • 燃焼問題に現れる弛緩振動について  [Not invited]
    栄 伸一郎
    応用数学合同シンポジウム  1989/12  京都大数理解析研究所
  • Relaxation-oscillation in infinite dimensional dynamical systems  [Not invited]
    EI Shin-Ichiro
    Nonlinear Analysis Semina  1989/11  京都大理
  • Relaxation-Oscillations in Infinite Dimensional Dynamical Systems  [Not invited]
    EI Shin-Ichiro
    発展方程式と非線形問題への応用  1989/10  京都大数理解析研究所
  • On fast and slow motions in reaction-diffusion systems with an application to relaxation oscillations  [Not invited]
    EI Shin-Ichiro
    応用解析学セミナー  1989/10  広島大理
  • Reduction of Certain Quasi-linear Parabolic Equations to Finite Dimensional Flows  [Not invited]
    EI Shin-Ichiro
    発展方程式セミナー  1989/06  広島大理
  • Two-timing methods とその応用  [Not invited]
    栄 伸一郎
    数理解析とその応用研究会  1989/01  岡山理大
  • Two-timing methods with applications to nonlinear parabolic equations  [Not invited]
    EI Shin-Ichiro
    Nonlinear partial differential equationsセミナー  1989/01  東大理学部数学教室
  • Two-timing methods とその応用  [Not invited]
    栄 伸一郎
    数値解析セミナー  1988/11  京大数理研
  • The effect of non-local convection on reaction-diffusion equations  [Not invited]
    EI Shin-Ichiro
    1988/06  Heriot-Watt University (U.K.)
  • On two-timing methods in abstract parabolic equations with applications to reaction-diffusion systems,in Conferenceon reaction diffusion equations  [Not invited]
    EI Shin-Ichiro
    1988/05  Heriot-Watt University(U.K.)
  • 変数係数を持ったある半線形放物型方程式系の解の挙動について  [Not invited]
    栄 伸一郎
    1988/04  広島大学数学教室談話会
  • Two-timing methods とその力学系への応用  [Not invited]
    EI Shin-Ichiro
    数理解析とその応用研究会  1988/01  岡山理大
  • Two-timing methods with applications to dynamical systems  [Not invited]
    EI Shin-Ichiro
    NAセミナー  1987/11  東京大学理学部数学教室
  • Two-timing methods with applications to heterogeneous reaction-diffusion systems  [Not invited]
    EI Shin-Ichiro
    学位論文発表会  1987/10  広島大理学部数学教室
  • Two-timing methods with applications to bifurcation problems  [Not invited]
    EI Shin-Ichiro
    Work shop of finite and infinite dynamical system  1987/09  広島婦人教育会館
  • 空間依存性をもったある反応-拡散方程式系への two-timing methodの応用  [Not invited]
    栄 伸一郎
    偏微分方程式論札幌シンポジウム  1987/07  北海道大学理学部数学教室
  • 空間依存性をもった Prey-Predator models の解の挙動について  [Not invited]
    栄 伸一郎
    応用解析学セミナー  1987/06  広島大理学部
  • A spatially aggregating population model involving size-distributed dynamics  [Not invited]
    EI Shin-Ichiro
    日本数学会総会応用数学分科会一般講演  1987/04  東京大学教養部
  • 無限次元空間におけるrelaxation oscillations  [Not invited]
    栄 伸一郎
    ワークショップ 非線形振動と波動  1987/02  徳島
  • Transient and large time behaviors to heterogeneous reaction-diffusion equations  [Not invited]
    EI Shin-Ichiro
    名古屋大学理学部数学教室P.D.E.Seminar  1987/02
  • 集中効果をもった反応-拡散方程式の定常解とその安定性について  [Not invited]
    栄 伸一郎
    応用解析学セミナー  1986/11  広島大理学部

MISC

  • Chao Nien Chen, Shin Ichiro Ei, Shin Ichiro Ei, Shyuh yaur Tzeng  Physica D: Nonlinear Phenomena  2018/01/01  [Not refereed][Not invited]
     
    © 2018 Elsevier B.V. Particle like structures have been observed in many fields of science. In a homogeneous medium, a stable, standing pulse is a localized wave that may arise when nonlinear and dissipative effects are in balance. In this paper, we investigate certain phenomena associated with the dynamics of pulse solutions for a FitzHugh–Nagumo reaction–diffusion model. When two pulses are located far from one another initially, their weak interaction drives the subsequent slow dynamics. Our comprehension of the standing pulse profiles allows us to quantitatively characterize their interplay; when the diffusivity of the activator is small compared to that of the inhibitor, the two pulses repel. In addition, using a center-manifold reduction to study the presence of heterogeneities in the environment, we demonstrate that the pulses will move so as to maximize the strength of activation or minimize that of inhibition. The pulse motion will also be influenced by the reaction mechanism.
  • 田中吉太郎, 八杉徹雄, 佐藤純, 栄伸一郎  日本応用数理学会年会講演予稿集(CD-ROM)  2017-  43‐44  2017/09/04  [Not refereed][Not invited]
  • 田中吉太郎, 八杉徹雄, 佐藤純, 長山雅晴, 栄伸一郎  計算工学講演会論文集(CD-ROM)  22-  ROMBUNNO.D‐05‐5  2017/05/31  [Not refereed][Not invited]
  • 田中 吉太郎, 八杉 徹雄, 佐藤 純, 長山 雅晴, 栄 伸一郎  計算工学講演会論文集 Proceedings of the Conference on Computational Engineering and Science  22-  5p  2017/05  [Not refereed][Not invited]
  • 反応拡散型数理モデル -分岐構造を通した数理モデルに対する一考察-,
    栄 伸一郎  実験医学増刊号 羊土社  35-  (5)  60  -67  2017  [Not refereed][Invited]
  • 栄伸一郎  白石記念講座  67th-  29  -42  2015/11/13  [Not refereed][Not invited]
  • 時・空間パターンの数理解析
    電子情報通信学会誌  98-  (11)  961  -966  2015/11  [Not refereed][Not invited]
     
    解説・総説
  • 栄伸一郎  電子情報通信学会誌  98-  (11)  961  -966  2015/11/01  [Not refereed][Not invited]
  • 栄 伸一郎  電子情報通信学会誌 = The journal of the Institute of Electronics, Information and Communication Engineers  98-  (11)  961  -966  2015/11  [Not refereed][Not invited]
  • 栄伸一郎  応用数理  24-  (1)  34  -36  2014/03/25  [Not refereed][Not invited]
  • Ei Shin-Ichiro  応用数理  24-  (1)  34  -36  2014/03/25  [Not refereed][Not invited]
  • 栄 伸一郎  応用数理  24-  (1)  34  -36  2014/03  [Not refereed][Not invited]
  • Mathematical Analysis for Pattern Formation Problems,A Mathematical Approach to Research Problems of Science and Technology
    R. Nishii, S.-I. Ei, M. Koiso, H. Ochiai, K. Okada, S. Saito, T. Shirai, Editors  Mathematics for Industry 5, Springer 2014  133  -139  2014  [Not refereed][Not invited]
     
    解説・総説
  • Study Group Workshop 2013,数学協働プログラム, Lecture & Report, 九大IMI
    編集, 栄 伸一郎, 溝口 佳寬, 脇 隼人, 渋田 敬史  2013  [Not refereed][Not invited]
     
    解説・総説
  • 科学・技術の研究課題への数学アプローチ : 数学モデリングの基礎と展開
    西井 龍映, 栄 伸一郎, 岡田 勘三, 落合 啓之, 小磯 深幸, 斎藤 新悟, 白井 朋之  2013  [Not refereed][Not invited]
     
    九州大学マス・フォア・インダストリ研究所 :
    九州大学大学院数理学研究院グローバルCOEプログラム
    「マス・フォア・インダストリ教育研究拠点」
    解説・総説
  • Weng Wulin, Ei Shin-Ichiro, Ohgane Kunishige, Ogane Kunishige  Journal of Math-for-Industry (JMI)  4-  (0)  123  -133  2012/10  [Not refereed][Not invited]
     
    Based on neurophysiological studies, a walking model has been proposed, which is the coupling of two oscillatory systems, i.e., a central pattern generator (CPG) and a musculoskeletal system (Body). The walking model can well reproduce human walking. However, time delays on a sensorimotor loop give a serious problem in motor control in general. Indeed even a short time delay induces the walking model to fall. Theoretical studies have shown that the eng=walking model can overcome the time delays by the flexible-phase locking. It emerges from the following two conditions; 1) activity of CPG and Body has stability of limit cycle; 2) a sign differs between coupling coefficients of the connection from Body to CPG and from CPG to Body, i.e., the afferent and efferent connection. Physical or physiological interpretation of this two theoretical conditions is an important problem. The condition 1) has already interpreted [1]. In this paper, we gain a physical interpretation of the condition 2). We introduce the simplified model fit to best analyze. Analyzing the simplified model, this study leads to the interpretation in which signs of the coupling coefficients corresponding to the excitatory and inhibitory connection are regarded as a force to forward and backward shift the CPG activity, respectively. This is an essential element to yield the flexible-phase locking.
  • Weng Wulin, Ei Shin-Ichiro, Ohgane Kunishige  JMI : journal of math-for-industry  4-  123  -133  2012  [Not refereed][Not invited]
  • Shin-Ichiro Ei, Kunishige Ohgane  KYUSHU JOURNAL OF MATHEMATICS  65-  (2)  197  -217  2011/09  [Not refereed][Not invited]
     
    We develop a systematic method for deriving the phase dynamics of perturbed periodic solutions. The method is to regard periodic solutions as slowly modulated traveling solutions on the circle. There, problems are reduced to the perturbed problems from stationary solutions on the circle. This makes the treatment of periodic solutions far easier and systematic. We also give the rigorous proofs for this method.
  • 栄 伸一郎  数理解析研究所講究録  1680-  27  -48  2010/04  [Not refereed][Not invited]
  • 反応拡散系の数理
    栄 伸一郎  自己組織化ハンドブック  149  -154  2009  [Not refereed][Not invited]
     
    解説・総説、NTS出版
  • Ei Shin-Ichiro, Nishiura Yasumasa, Ueda Kei-Ichi  JMI  1-  91  -95  2009  [Not refereed][Not invited]
     
    The dynamics of a pulse for reaction-diffusion systems in 1D is considered in the neighborhood of the bifurcation point with codimension two, at which both of saddle-node and drift bifurcations occur at the same time. It is theoretically shown that when the bifurcation parameter is close to such a bifurcation point, a pulse moves with oscillation, and then starts to split.
  • 反応拡散方程式系におけるパルスの挙動
    の本数理生物学会ニュースレター  (55)  1  -4  2008/05  [Not refereed][Not invited]
     
    解説・総説
  • 栄 伸一郎  数理解析研究所講究録  1597-  69  -77  2008/05  [Not refereed][Not invited]
  • 池田 榮雄, 栄 伸一郎  数理解析研究所講究録  1597-  83  -88  2008/05  [Not refereed][Not invited]
  • Ei Shin-Ichiro, Tsujikawa Tohru  RIMS Kokyuroku  1588-  118  -123  2008/04  [Not refereed][Not invited]
  • Ei Shin-Ichiro  Meeting abstracts of the Physical Society of Japan  63-  (1)  302  -302  2008/02/29  [Not refereed][Not invited]
  • 栄伸一郎  日本物理学会講演概要集  63-  (1)  302  2008/02/29  [Not refereed][Not invited]
  • Shin -Ichiro Ei, Hideo Ikeda, Takeyuki Kawana  Japan Journal of Industrial and Applied Mathematics  25-  (1)  117  -147  2008/02  [Not refereed][Not invited]
     
    In this paper, two component reaction-diffusion systems with a specific bistable nonlinearity are concerned. The systems have the bifurcation structure of pitch-fork type of traveling front solutions with opposite velocities, which is rigorously proved and the ordinary differential equations describing the dynamics of such traveling front solutions are also derived explicitly. It enables us to know rigorously precise information on the dynamics of traveling front solutions. As an application of this result, the imperfection structure under small perturbations and the dynamics of traveling front solutions on heterogeneous media are discussed.
  • Shin-Ichiro Ei, Hideo Ikeda, Takeyuki Kawana  JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS  25-  (1)  117  -147  2008/02  [Not refereed][Not invited]
     
    In this paper, two component reaction-diffusion systems with a specific bistable nonlinearity are concerned. The systems have the bifurcation structure of pitch-fork type of traveling front solutions with opposite velocities, which is rigorously proved and the ordinary differential equations describing the dynamics of such traveling front solutions are also derived explicitly. It enables us to know rigorously precise information on the dynamics of traveling front solutions. As an application of this result, the imperfection structure under small perturbations and the dynamics of traveling front solutions on heterogeneous media are discussed.
  • パターン形成の数理
    栄伸一郎, 山田光太郎  -126  2008  [Not refereed][Not invited]
     
    解説・総説、講談社
  • フーリエ解析+偏微分方程式
    藤原毅夫, 栄伸一郎  -198  2007  [Not refereed][Not invited]
     
    解説、総説(裳華房)
  • Dynamics of Turing Patterns for Reaction-Diffusion Systems in a Cylindrical Domain on 2D, Proceedings of Hyperbolic problems,Theory
    栄 伸一郎  Numerics and Applications 2004(eds. Asakura, Aiso, Kawashima,Matsumura, Nishibata, Nishihara)  121  -128  2006  [Not refereed][Not invited]
     
    Yokohama Publishers
    解説・総説
  • パターン形成とダイナミクス
    三村, 上山, 西浦, 長山, 栄  -149  2006  [Not refereed][Not invited]
     
    解説、総説(東大出版会)
  • SI Ei, M Mimura, M Nagayama  DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS  14-  (1)  31  -62  2006/01  [Not refereed][Not invited]
     
    This paper is concerned with the dynamics of travelling spot solutions in two dimensions. Travelling spot solutions are constructed under the bifurcation structure with Jordan block type degeneracy. It is shown that if the velocity is very slow, such travelling spots possess reflection property. In order to do it, we derive the reduced ordinary differential equations describing the dynamics of interacting travelling spots in RD systems by using center manifold theory. This reduction enables us to prove that two very slowly travelling spots reflect before collision as if they were elastic particles.
  • OHGANE Kunishige, OHGANE Akane, MAHARA Hitoshi, EI Shin-ichiro  形の科学会誌 = Bulletin of the Society for Science on Form  20-  (2)  169  -170  2005/11/01  [Not refereed][Not invited]
  • SI Ei, M Kuwamura, Y Morita  PHYSICA D-NONLINEAR PHENOMENA  207-  (3-4)  171  -219  2005/08  [Not refereed][Not invited]
     
    In this paper singular perturbation problems in reaction-diffusion systems are studied from a viewpoint of variational principle. The goal of the study is to provide an unified and transparent framework to understand existence, stability and dynamics of solutions with transition layers in contrast to previous works in many literatures on singular perturbation theory. (c) 2005 Elsevier B.V. All rights reserved.
  • Ei Shin-Ichiro  RIMS Kokyuroku  1425-  122  -129  2005/04  [Not refereed][Not invited]
  • Dynamics of Turing patterns in cylindrical domains in 2D,流体と気体の数学解析
    栄 伸一郎  数理解析研究所講究録 1425  122  -129  2005  [Not refereed][Not invited]
  • 栄 伸一郎  総合講演・企画特別講演アブストラクト  2005-  (1)  55  -67  2005  [Not refereed][Not invited]
  • Ei Shin-ichiro  Bulletin of the Japan Society for Industrial and applied Mathematics  14-  (1)  35  -47  2004/03/25  [Not refereed][Not invited]
  • 栄 伸一郎  数理解析研究所講究録  1356-  108  -115  2004/02  [Not refereed][Not invited]
  • EI Shin-ichiro  盛岡応用数学小研究集会報告集  2003-  5  -10  2004/01/01  [Not refereed][Not invited]
     
    Reaction-dffusion systems in an infinitely long strip-like domain with finite width in 2D are treated.We construct the solution connecting different types of stationary solutions at infinity by considering the neighborhood of Turing instability.We also derive 4th order equations of buckling type which shows the dynamics of the connecting solutions.
  • 栄 伸一郎  数理解析研究所講究録  1313-  149  -158  2003/04  [Not refereed][Not invited]
  • 栄伸一郎  横浜市立大学論叢 自然科学系列  53-  (3)  119  -134  2002/10/31  [Not refereed][Not invited]
  • SI Ei, JC Wei  JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS  19-  (2)  181  -226  2002/06  [Not refereed][Not invited]
     
    In this paper, the Gierer-Meinhardt model systems with finite diffusion constants in the whole space R-2 is considered. We give a regorous proof on the existence and the stability of a single spike solution, and by using such informations, the repulsive dynamics of the interacting multi single-spike solutions is also shown when distances between spike solutions are sufficiently large. This clarifies some part of the mechanism of the evolutional process of localized patterns appearing in the Gierer-Meinhardt model equations.
  • SI Ei, M Mimura, A Nagayama  PHYSICA D-NONLINEAR PHENOMENA  165-  (3-4)  176  -198  2002/05  [Not refereed][Not invited]
     
    It had been long believed that one-dimensional travelling pulses and the corresponding two-dimensional expanding rings and spiral waves arising in excitable reaction-diffusion systems annihilate when they closely approach one another. However, recently it has been numerically confirmed that if the velocity is very slow, expanding rings and spiral do not necessarily annihilate. In particular, in some situation, two closely approaching pulses reflect, as if they were elastic like objects. By using the center manifold theory, we show that if there are travelling pulses which primarily and super-critic ally bifurcate from a standing pulse when some parameter is varied, they possess reflection mechanism if the velocity is very slow. (C) 2002 Elsevier Science B.V. All rights reserved.
  • パルス状局在パターンのダイナミクスについて
    栄 伸一郎  横浜市立大学論叢 自然科学系列  53-  (2)  2002/03  [Not refereed][Not invited]
     
    解説、総説
  • 常微分方程式論
    柳田, 栄  -215  2002  [Not refereed][Not invited]
     
    解説、総説(朝倉書店)
  • Shin-Ichiro Ei  Journal of Dynamics and Differential Equations  14-  (1)  85  -137  2002  [Not refereed][Not invited]
     
    The interaction of stable pulse solutions on R1 is considered when distances between pulses are sufficiently large. We construct an attractive local invariant manifold giving the dynamics of interacting pulses in a mathematically rigorous way. The equations describing the flow on the manifold is also given in an explicit form. By it, we can easily analyze the movement of pulses such as repulsiveness, attractivity and/or the existence of bound states of pulses. Interaction of front solutions are also treated in a similar way. © 2002 Plenum Publishing Corporation.
  • Shin-Ichiro Ei, Juncheng Wei  Japan Journal of Industrial and Applied Mathematics  19-  (2)  181  -226  2002  [Not refereed][Not invited]
     
    In this paper, the Gierer-Meinhardt model systems with finite diffusion constants in the whole space R2 is considered. We give a regorous proof on the existence and the stability of a single spike solution, and by using such informations, the repulsive dynamics of the interacting multi single-spike solutions is also shown when distances between spike solutions are sufficiently large. This clarifies some part of the mechanism of the evolutional process of localized patterns appearing in the Gierer-Meinhardt model equations.
  • S Ei, Y Nishiura, K Ueda  JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS  18-  (2)  181  -205  2001/06  [Not refereed][Not invited]
     
    Since early 90's, much attention has been paid to dynamic dissipative patterns in laboratories, especially, self-replicating pattern (SRP) is one of the most exotic phenomena. Employing model system such as the Gray-Scott model, it is confirmed also by numerics that SRP can be obtained via destabilization of standing or traveling spots. SRP is a typical example of transient dynamics, and hence it is not a priori clear that what kind of mathematical framework is appropriate to describe the dynamics. A framework in this direction is proposed by Nishiurar-Ueyama [16], i.e., hierarchy structure of saddle-node points, which gives a basis for rigorous analysis. One of the interesting observation is that when there occurs self-replication, then only spots (or pulses) located at the boundary (or edge) are able to split. Internal ones do not duplicate at all. For ID-case, this means that the number of newly born pulses increases like 2k after k-th splitting, not 2(n)-splitting where all pulses split simultaneously. The main objective in this article is two-fold: One is to construct a local invariant manifold near the onset of self-replication, and derive the nonlinear ODE on it. The other is to study the manner of splitting by analysing the resulting ODE, and answer the question "2(n)-splitting or edge-splitting?" starting from a single pulse. It turns out that only the edge-splitting occurs, which seems a natural consequence from a physical point of view, because the pulses at edge are easier to access fresh chemical resources than internal ones.
  • Shin-Ichiro Ei, Yasumasa Nishiura, Kei-Ichi Ueda  Japan Journal of Industrial and Applied Mathematics  18-  (2)  181  -205  2001  [Not refereed][Not invited]
     
    Since early 90's, much attention has been paid to dynamic dissipative patterns in laboratories, especially, self-replicating pattern (SRP) is one of the most exotic phenomena. Employing model system such as the Gray-Scott model, it is confirmed also by numerics that SRP can be obtained via destabilization of standing or traveling spots. SRP is a typical example of transient dynamics, and hence it is not a priori clear that what kind of mathematical framework is appropriate to describe the dynamics. A framework in this direction is proposed by Nishiura-Ueyama [16], i.e., hierarchy structure of saddle-node points, which gives a basis for rigorous analysis. One of the interesting observation is that when there occurs self-replication, then only spots (or pulses) located at the boundary (or edge) are able to split. Internal ones do not duplicate at all. For 1D-case, this means that the number of newly born pulses increases like 2k after k-th splitting, not 2n-splitting where all pulses split simultaneously. The main objective in this article is two-fold: One is to construct a local invariant manifold near the onset of self-replication, and derive the nonlinear ODE on it. The other is to study the manner of splitting by analysing the resulting ODE, and answer the question "2n-splitting or edge-splitting?" starting from a single pulse. It turns out that only the edge-splitting occurs, which seems a natural consequence from a physical point of view, because the pulses at edge are easier to access fresh chemical resources than internal ones.
  • Ei Shin-Ichiro  RIMS Kokyuroku  1178-  87  -94  2000/12  [Not refereed][Not invited]
  • SI Ei, K Fujii, T Kunihiro  ANNALS OF PHYSICS  280-  (2)  236  -298  2000/03  [Not refereed][Not invited]
     
    The renormalization group (RG) method as a powerful tool for reduction of evolution equations is formulated in terms of the notion of invariant manifolds. We start with derivation of an exact RG equation which is analogous to the Wilsonian RG equations in statistical physics and quantum field theory. It is clarified that the perturbative RG method constructs invariant manifolds successively as the initial value of evolution equations, thereby the meaning to set t(0) = t is naturally understood where t(0) is the arbitrary initial time. We show that thr integral constants in the unperturbative solution constitutes natural coordinates of the invariant manifold when the linear operator. A in the evolution equation is semi-simple, i.e., diagonalizable: when A is not semi-simple and has a Jordan cell. a slight modification is necessary because the dimension of the invariant manifold is increased by the perturbation. The RG equation determines the slow motion of the would-be integral constants in the unperturbative solution on the invariant manifold. We present the mechanical procedure to construct the perturbative solutions hence the initial values with which the RG equation gives meaningful results. The underlying structure of the reduction by the KG method as formulated in the present work turns out to completely tit to the universal one elucidated by Kuramoto some years ago. We indicate that the reduction procedure of evolution equations has a good correspondence with the renormalization procedure in quantum field theory: the counter part of the universal structure of reduction elucidated by Kuramoto may he Polchinski's theorem for renormalizable field theories. We apply the method to interface dynamics such as kink anti-kink and soliton soliton interactions in the latter of which a linear operator having a Jordan-cell structure appears. (C) 2000 Academic Press.
  • Shin-Ichiro Ei, Ryo Ikota, Masayasu Mimura  Interfaces and Free Boundaries  1-  (1)  57  -80  1999  [Not refereed][Not invited]
     
    We consider a reaction-diffusion system to describe the interaction of three competing species which move by diffusion in R2, under the situation where all of the diffusion rates are small and all of the inter-specific competition rates are large. The resulting system possesses three locally stable spatially constant equilibria, each of which implies that only one of the competing species survive and the other two are extinct. Since the diffusion rates are small, internal layer regions appear as sharp interfaces with triple junctions, which generally divide the whole plane into three different regions occupied by only one of the species. The dynamics of interfaces as well as triple junctions are numerically studied. More specifically, assuming that three competing species are almost equal in competitive strength, we derive an angle condition between any neighboring interfaces at triple junctions by formal asymptotic analysis. Furthermore, for more general cases, we numerically study the dynamics of segregating patterns of three competing species from interfacial view points.
  • SI Ei, E Yanagida  SIAM JOURNAL ON MATHEMATICAL ANALYSIS  29-  (3)  555  -595  1998/05  [Not refereed][Not invited]
     
    The dynamics of interfaces in the Allen-Cahn equation is studied. If a domain in R-2 has constant width along a smooth curve, it is called a strip-like domain. We derive an equation which describes the motion of a straight interface intersecting the boundary of the strip-like domain. The equation shows that the motion is slower than the mean curvature ow, but faster than the very slow dynamics.
  • SI Ei, E Yanagida  SIAM JOURNAL ON MATHEMATICAL ANALYSIS  29-  (3)  555  -595  1998/05  [Not refereed][Not invited]
     
    The dynamics of interfaces in the Allen-Cahn equation is studied. If a domain in R-2 has constant width along a smooth curve, it is called a strip-like domain. We derive an equation which describes the motion of a straight interface intersecting the boundary of the strip-like domain. The equation shows that the motion is slower than the mean curvature ow, but faster than the very slow dynamics.
  • SI Ei, R Ikota, M Mimura  TOHOKU MATHEMATICAL PUBLICATIONS, NO 8  55  -63  1998  [Not refereed][Not invited]
     
    We consider a three component competition-diffusion systems under the situation where the diffusion rats are small and the inter-specific competition rates are large. In this situation, the system has three locally stable equilibria, each of which implies that only one of the competing species survive and the other two are extinct. Since the diffusion rates are small, there appear sharp interfaces which separate whole space into 3 different regions occupied by only one of the competing species. If the system is treated in R-2, three interfacial curves may meet at one point. We derive an angle condition at the triple junction point by a formal asymptotic analysis and study the dynamics of solutions in a;neighborhood of the point as well as the dynamics of interfaces.
  • 栄 伸一郎  数理科学  35-  (11)  23  -29  1997/11  [Not refereed][Not invited]
  • EI SHIN'ICHIRO  数理科学  35-  (11)  23  -29  1997/11  [Not refereed][Not invited]
  • 反応拡散方程式とパターン形成
    栄 伸一郎  数理科学 11月号  23  -29  1997  [Not refereed][Not invited]
     
    解説・総説
  • Shin-Ichiro Ei, Masato Iida, Eiji Yanagida  Japan Journal of Industrial and Applied Mathematics  14-  (1)  1  -23  1997  [Not refereed][Not invited]
     
    Consider the equation ut = ε2div(D(x)∇u) + f(u ε) in ℝn, where D(x) is a positive function of x ∈ ℝn, f is the derivative of a bistable potential, and ε > 0 is a small parameter. Let Γ(T), T ∈ [0,T0], be a one-parameter family of smooth hypersurfaces which move with the time scale T = ε2t according to a certain generalized mean curvature flow. It is shown that, if the initial data have an interface which is close to Γ(0), then the interface remains close to Γ(ε2t) for t ε [0,T0/ε2]. Moreover, if T0 = ∞ and Γ(T) converges to a stable stationary hypersurface as T → ∞, then the interface remains close to Γ(ε2t) for all t ≥ 0.
  • Dynamics of Interfaces in a Scalar Parabolic equation with Variable coefficients
    Japan J. Indust. and Appl. Math.  14-  (1)  1  1997  [Not refereed][Not invited]
  • Shin-Ichiro Ei, Masato Iida, Eiji Yanagida  Japan Journal of Industrial and Applied Mathematics  14-  (1)  1  -23  1997  [Not refereed][Not invited]
     
    Consider the equation ut = ε2div(D(x)∇u) + f(u ε) in ℝn, where D(x) is a positive function of x ∈ ℝn, f is the derivative of a bistable potential, and ε > 0 is a small parameter. Let Γ(T), T ∈ [0,T0], be a one-parameter family of smooth hypersurfaces which move with the time scale T = ε2t according to a certain generalized mean curvature flow. It is shown that, if the initial data have an interface which is close to Γ(0), then the interface remains close to Γ(ε2t) for t ε [0,T0/ε2]. Moreover, if T0 = ∞ and Γ(T) converges to a stable stationary hypersurface as T → ∞, then the interface remains close to Γ(ε2t) for all t ≥ 0.
  • SI Ei, MH Sato, E Yanagida  AMERICAN JOURNAL OF MATHEMATICS  118-  (3)  653  -687  1996/06  [Not refereed][Not invited]
     
    The dynamics of a moving hypersurface in a domain D subset of R(N) is studied. It is assumed that the hypersurface moves depending on its curvature, normal vector and position with the boundary that intersects partial derivative D with a constant contact angle. A stability criterion about a stationary hypersurface is established in the form of an eigenvalue problem, which includes geometrical information of partial derivative D and the stationary hypersurface.
  • Shin-Ichiro Ei, Eiji Yanagida  Journal of Dynamics and Differential Equations  7-  (3)  423  -435  1995/07  [Not refereed][Not invited]
     
    A study is made for equations of evolving curves on a two-dimensional square domain Ω. It is assumed that a curve moves depending on its curvature, normal vector, and position and is orthogonal to ∂Ω at its end points. Under some conditions, instability of stationary solutions is proved through an eigenvalue analysis. © 1995 Plenum Publishing Corporation.
  • Shin-Ichiro Ei, Eiji Yanagida  Journal of Dynamics and Differential Equations  7-  (3)  423  -435  1995/07  [Not refereed][Not invited]
     
    A study is made for equations of evolving curves on a two-dimensional square domain Ω. It is assumed that a curve moves depending on its curvature, normal vector, and position and is orthogonal to ∂Ω at its end points. Under some conditions, instability of stationary solutions is proved through an eigenvalue analysis. © 1995 Plenum Publishing Corporation.
  • 栄 伸一郎  横浜市立大学論叢 自然科学系列  46-  (2)  45  -64  1995/03  [Not refereed][Not invited]
  • EI SHIN'ICHIRO  横浜市立大学論叢 自然科学系列  46-  (2)  45  -64  1995/03  [Not refereed][Not invited]
  • Ei Shin-Ichiro, Ohta Takao  Bussei Kenkyu  63-  (5)  628  -634  1995/02/20  [Not refereed][Not invited]
     
    この論文は国立情報学研究所の電子図書館事業により電子化されました。
  • 栄 伸一郎  数理解析研究所講究録  889-  85  -93  1994/11  [Not refereed][Not invited]
  • Interaction of pulses in FitzHugh-Nagumo equations, Reaction-Diffusion Equations and Their Applicationsand Computational Aspects
    栄 伸一郎  China-Japan Symposium (eds.T-T. Li, M. Mimura, Y. Nishiura, Q-X. Ye) pp.6-13  1994  [Not refereed][Not invited]
     
    World Scientific
    解説・総説
  • Shin-Ichiro Ei, Takao Ohta  Physical Review E  50-  (6)  4672  -4678  1994  [Not refereed][Not invited]
     
    We develop a systematic method of deriving the equation of motion for interacting fronts or pulses in one dimension. The theory is applicable to both dissipative and dispersive systems. In the case of the time-dependent Ginzburg-Landau equation, which is a typical example of a dissipative system, the front equation obtained is the same as has been obtained previously. The pulse interaction is also derived for the Kortewegde Vries equation, emphasizing the difference between the cases with and without dissipative terms. © 1994 The American Physical Society.
  • S. I. Ei, E. Yanagida  SIAM Journal on Applied Mathematics  54-  (5)  1355  -1373  1994  [Not refereed][Not invited]
     
    This paper is concerned with the dynamics of interfaces in the Lotka-Volterra competition-diffusion system ut = ε2Δu+u(1-u-cw), wt = ε2DΔw+w(a-bu-w), in Rn, where ε> 0 is a small parameter and D> 0 is a constant. If 0< 1/c< a< b, this system has two locally stable equilibria, (u,w) = (1,0) and (0,a). In this case, interfaces may appear that separate Rn into two regions occupied by u and w, respectively. In this paper, it is shown that the normal velocity of the interface is approximately given by εθ, which is equal to the propagation speed of a traveling wave solution to the above system in one dimension. When θ = 0, it is shown that the normal velocity of the interface is approximately given by -ε2(n-1)Lκ, where L> 0 is a weighted mean of 1 and D, and κ is the mean curvature of the interface.
  • Stability of stationary interfaces in a generalized mean curvature flow
    J. Fac. Sci. Univ. Tokyo Sec. IA  40-  (3)  651  1994  [Not refereed][Not invited]
  • EI SHIN-ICHIRO  応用数学合同研究集会報告集 平成6年  59.1-59.2  1994  [Not refereed][Not invited]
  • 栄 伸一郎  応用数理  3-  (2)  142  -145  1993/06/15  [Not refereed][Not invited]
  • Failure of oscillations in combustion model equations,Lecture Notes in Num. Appl. Anal. 12
    S.-I. Ei, Q. Fang, M. Mimura, S. Sakamoto  Nonlinear PDE-JAPAN Symposium 2 1991(eds. K. Masuda, M. Mimura and T. Nishida)  87  -110  1993  [Refereed][Not invited]
     
    解説・総説
  • Ei Shin-Ichiro, Yanagida Eiji  Journal of The Faculty of Science, The University of Tokyo, Section IA, Mathematics  40-  (3)  651  -661  1993  [Not refereed][Not invited]
  • M. Kuwamura, S. I. Ei, M. Mimura  Japan Journal of Industrial and Applied Mathematics  9-  (1)  35  -77  1992/02  [Not refereed][Not invited]
     
    We consider a bistable reaction-diffusion equation coupled with a time-dependent constrained condition {Mathematical expression} where γ, δ and ε are positive constants. This equation lies in a framework of activator-inhibitor models which arise in biology. When ε is sufficiently small, it is found that internal layers of width O(ε) appear in the u-component under the zero-flux boundary conditions, and that these layers propagate very slowly with velocity O(e-A/ε) for some positive constant A. © 1992 JJIAM Publishing Committee.
  • Domain-dependency ofsolutions to combustion model equations
    栄 伸一郎  Nonlinear PDEs withapplication to patterns, waves and interfaces (eds. M. Mimuraand T. Nishida)  323  -356  1992  [Refereed][Not invited]
     
    KTK Scientific Publications, Tokyo
    解説・総説
  • Shin-Ichiro Ei, Masayasu Mimura  Journal of Dynamics and Differential Equations  4-  (1)  191  -229  1992/01  [Not refereed][Not invited]
     
    Combustion processes are classified into three types depending upon the amount of fuel supply: two of them are the stationary states with either low or high temperatures and the other is the periodic state with relaxation oscillation type. We analyze the dependency of these processes on the amount of fuel supply by using the fast and slow dynamics approach. © 1992 Plenum Publishing Corporation.
  • Kazutaka Ohara, Kazutaka Ohara, Kazutaka Ohara, Shin Ichiro Ei, Shin Ichiro Ei, Shin Ichiro Ei, Toshitaka Nagai, Toshitaka Nagai, Toshitaka Nagai  Hiroshima Mathematical Journal  22-  365  -386  1992/01/01  [Not refereed][Not invited]
     
    We are concerned with an ecological model described by a nonlinear diffusion equation with a nonlocal convection. The conditions under which stationary solutions exist are investigated. We also discuss the stability problem of stationary solutions. © 1992, Hiroshima University. All Rights Reserved.
  • 栄 伸一郎  応用数理  1-  (4)  350  -351  1991/12/16  [Not refereed][Not invited]
  • M MIMURA, SI EI, Q FANG  JOURNAL OF MATHEMATICAL BIOLOGY  29-  (3)  219  -237  1991  [Not refereed][Not invited]
     
    We discuss a competition-diffusion system to study coexistence problems of two competing species in a homogeneous environment. In particular, by using invariant manifold theory, effects of domain-shape are considered on this problem.
  • Relaxation Oscillations in Clmbustion Models of Thermal Self-Ignition
    J. Dynamics and Differrntial Eguations  4-  (1)  1991  [Not refereed][Not invited]
  • Two-timing methods with applications to nonlinear parabolic equations
    EI Shin-Ichiro  Nonlinear PDE-JAPAN Symposium 1989 (eds. K. Masuda and M. Mimura)  1991  [Not refereed][Not invited]
     
    解説・総説
  • Ei Shin-Ichiro  RIMS Kokyuroku  730-  41  -60  1990/10  [Not refereed][Not invited]
  • SI EI, M MIMURA  SIAM JOURNAL ON MATHEMATICAL ANALYSIS  21-  (2)  346  -361  1990/03  [Not refereed][Not invited]
  • S. I. Ei, M. Mimura, S. Takigawa  Japan Journal of Applied Mathematics  6-  (2)  223  -244  1989/06  [Not refereed][Not invited]
     
    A size-space distribution model of biological individuals including two effects of density-dependent growth rates for size and chemotactic aggregation for space is proposed. Assuming that the spatial movement is rapid in comparison with the growth process, we use time-scaling arguments to reduce the model to an approximating system of only size distribution. By the analysis of this simplified system, the dependence of these effects on extinction and existence of the individuals can be studied. © 1989 JJAM Publishing Committee.
  • Two-timing Methods with Applications to Heterogeneous Reaction-Diffusion Systems
    Hiroshima Mathematical J.  18-  1988  [Not refereed][Not invited]
  • Shin Ichiro Ei, Masayasu Mimura  Hiroshima Mathematical Journal  14-  649  -678  1985/01/01  [Not refereed][Not invited]
     
    We consider initial-boundary value problems for heterogeneous reactiondiffusion equations(formula presented) and study transient and ot ox ox large time behaviors of solutions. Our method is to explicitly construct a twotiming function u(t, ϵt, x) that converges to the exact solution as ϵ ↓ 0 uniformly in ϵ[0, ∞). Such an explicit expression of approximate solutions in terms of twotiming functions can be applied to a fairly general class of equations of the above form as well as weakly-coupled systems of such equations. © 1980, Pacific Journal of Mathematics.
  • Transient and Large Time Behavior of Solutions to Heterogenlous Reaction-Diffusion Eguaions
    Hiroshima Mathematical J.  14-  1984  [Not refereed][Not invited]
  • Phase dynamics on the modified oscillators in Bipedal locomotion
    Wulin Weng, Shin-Ichiro Ei, Kunishige Ohgane  [Not refereed][Not invited]

Research Grants & Projects

  • 生命現象における時空間パターンを支配する普遍的数理モデル導出に向けた数学理論の構築
    JSP:CREST
    Date (from‐to) : 2014/10 -2020/03 
    Author : EI Shin-Ichiro
  • 複雑現象を数理モデル化するための理論の構築
    JSPS:KIBAN B
    Date (from‐to) : 2014/04 -2019/03 
    Author : EI Shin-Ichiro
  • 高次元局在パターンの運動を解析するための理論
    JSPS:基盤(B)
    Date (from‐to) : 2012/04 -2017/03 
    Author : 栄 伸一郎
  • 文部科学省:科学研究費補助金(基盤研究(B), 基盤研究(B))
    Date (from‐to) : 2012 -2016 
    Author : 栄 伸一郎
  • Ministry of Education, Culture, Sports, Science and Technology:Grants-in-Aid for Scientific Research(挑戦的萌芽研究)
    Date (from‐to) : 2009 -2011 
    Author : Shin-ichiro EI, Atsushi TORAMARU
     
    By considering the neighborhood of a bifurcation point, we dealt with pulses with slow velocities and investigated the effects of geometrical properties of domains on pulse motions. In fact, general methods to derive the equations of motions were established and they were applied to problems of moving pulses along boundaries, in thin domains and on inhomogeneous media.
  • Ministry of Education, Culture, Sports, Science and Technology:Grants-in-Aid for Scientific Research(基盤研究(C))
    Date (from‐to) : 2004 -2007 
    Author : Shin-ichiro EI, Eiji YANAGIDA, Kazuyuki FUJII, Takaaki SHIRAISHI, Tetsu MIZUMACHI
     
    In the period of this project, we completely classified the bifurcation structures of 1 dimensional traveling front solutions and analyzed the dynamics of traveling front solutions in inhomogeneous media from the dynamical system point of view. By the analysis, we can know how the solutions go through or reflect by obstacles with words of invariant manifold theory. The interaction of two front solutions is also treated. In general, the treatment of pulse solution is difficult. Applying the results of the interaction of two front solutions, we construct a pulse solution as the combination of...
  • Ministry of Education, Culture, Sports, Science and Technology:Grants-in-Aid for Scientific Research(基盤研究(C))
    Date (from‐to) : 2000 -2003 
    Author : Shin-ishiro EI, Tetsu MIZUMACHI, Takaaki SHIRAISHI, Kazuyuki FUJII, Kouichi TAKEMURA, Eiji YANAGIDA
     
    In this project, we considered the localized patterns in reaction-diffusion systems and tried to establish the theories to analyze the time evolutional behaviors. As the consequence, we obtained several results for the systems in 1D problems such as the bifurcation structures and pulse interactions. Explicitly speaking, he tails of pulse-like localized patterns are exponentially decaying, then we derived the equations describing the motion of interacting pulses as well as the mathematical validity. Moreover, by considering them in the neighborhood of bifurcation points and applying the stan...
  • 文部科学省:科学研究費補助金(萌芽的研究)
    Date (from‐to) : 1997 -1999 
    Author : 栄 伸一郎, 柳田 英二, 藤井 一幸, 一楽 重雄, 中神 祥臣, 水町 徹
     
    最終年度に当たる本年度は、界面を始めとする局在状態のさまざまなダイナミクスを、これまでの研究で得た結果をもとに見直すという作業を行った。特に、パルスの弱い相互作用に基づく解析を、空間一次元におけるパルスのダイナミクスに応用することにより、分岐問題を含め、既成の多くの問題を統一的に見ることが出来るようになった。例えば従来、定常問題の分岐問題として扱われていた問題は、分岐理論を用い、存在、安定性と別々に証明していかなくてはならない場合が多かったが、弱い相互作用のアプローチをすることによって、直接時間発展のダイナミクスを導くことが出来るため、存在と安定性が同時に、かつ容易に示される。特に進行波解の分岐問題に関してその効力は大きく、進行波ということを意識することさえ必要なく、自然に導くことが出来るようになった。更に、ダイナミクスを直接見ることが出来るため、進行波解の分岐点近傍における、パルスの粒子的振る舞いの存在と証明が可能となった。これは、従来数値実験でのみ確認されていた現象であり、その理論的裏付けを与えたことになる。このように、空間一次元の反応拡散方程式における局在解のさまざまな運動は、弱い相互作用のもとでは、ほぼ解析が可能になったといえる。しかし、空間次元が2次元以上では、より複雑なダイナミクスがいくらでも出現し得る。現在のところ、あるパターン形成問題における安定な尖塔状局在定...
  • 文部科学省:科学研究費補助金(奨励研究(A))
    Date (from‐to) : 1993 -1993 
    Author : 榮 伸一郎, 栄 伸一郎
     
    反応拡散型のモデル方程式系で記述された生態系や化学反応等の現象において出現するさまざまなパターンは、モデル方程式の解の、ある等高線あるいは等高面を用いて表現される。従ってパターンを解析するということは、解の等高面の運動を研究することに他ならない。本研究では、反応拡散方程式系に関連した、そうした曲面の運動を解析するための第一歩として、曲面がその平均曲率や法線ベクトルのみに依存して運動する場合について、安定性を調べるための一般理論を構築する事を目的とした。その結果、時間的には不動の曲面(定常曲面)が存在した場合、その安定性は、定常曲面上のある種の固有値問題を解くことに帰着されることが示された。これにより、安定性を解析する上で変分的なアプローチが可能となった。このように、曲面の運動が平均曲率等その近傍のみの非常に局所的な情報で記述される場合には、そのダイナミックスの解析がある程度可能となったが、一部の現象を除けば、パターンを表現するような等高面は、かなり大域的な情報を基に運動することが知られている。そのような場合についても安定性等を考察するための理論を作ることが今後の課題である。
  • Nonlinear Partial Diflerential Equations
  • 非線形偏微分方程式
  • Nonlinear Partial Diflerential Equations

Educational Activities

Teaching Experience

  • Analytic Studies
    開講年度 : 2021
    課程区分 : 修士課程
    開講学部 : 理学院
    キーワード : 非線形性、パターン形成, 反応拡散系
  • Calculus II
    開講年度 : 2021
    課程区分 : 学士課程
    開講学部 : 全学教育
    キーワード : 原始関数, 積分, 重積分, リ-マン和, 変数変換
  • Applied Calculus and Differential Equations
    開講年度 : 2021
    課程区分 : 学士課程
    開講学部 : 理学部
    キーワード : 変数分離型方程式,求積法,ラプラス変換,積分方程式,解の存在定理,力学系, 基礎的な偏微分方程式
  • Advanced Mathematical Analysis
    開講年度 : 2021
    課程区分 : 学士課程
    開講学部 : 理学部
    キーワード : 非線形性、パターン形成, 反応拡散系

Social Contribution

Social Contribution

Others

  • 2019/10 -2019/10 China-Japan Workshop for Young Researchers on Nonlinear Diffusion Equations
    October 26-28, 2019, Beijing, China School of Mathematical Sciences, Capital Normal University, Beijing, China 首都?范大学 数学科学学院,北京,2019,10,26-28 Organizing committee: Hailiang Li Capital Normal University , China Yaping Wu Capital Normal University, China Shin-Ichiro Ei Hokkaido University, Japan Bendong Lou Shanghai Normal University, China Local organizing committee: Hailiang Li、Yaping Wu、Quansen Jiu、Dongjuan Niu、Xuying Zhao http://www.math.sci.hokudai.ac.jp/~Eichiro/Conference/China-Japan2019/WS.html
  • 2019/09 -2019/09 第12回応用数理研究会
    日時:2019年9月5日(木) - 9月7日(土) 場所:休暇村能登千里浜 石川県羽咋市羽咋町オ 70 Tel:0767-22-4121 https://www.qkamura.or.jp/noto/ 独立行政法人日本学術振興会 科学研究費補助金 基盤研究 (B)JP18H01139(研究代表者:森田善久) 基盤研究 (B)JP16H03949(研究代表者:長山雅晴) 基盤研究 (C)JS18K03412(研究代表者:中村健一) 国立研究開発法人科学技術振興機構 戦略的創造研究推進事業 CREST JPMJCR15D2(研究代表者:長山雅晴) CREST JPMJCR14D3(研究代表者:栄伸一郎) さきがけ JPMJPR16E2(研究代表者:李聖林)
  • 2019/08 -2019/08 第44回偏微分方程式論札幌シンポジウム
    2019年8月5日(月)~7日(水) 会場:北海道大学 理学部3号館3F309号室 http://www.math.sci.hokudai.ac.jp/sympo/sapporo/program190805.html 組織委員:栄伸一郎、浜向直 プログラム委員:栄伸一郎(北大)、小澤徹(早大)、儀我美一(東大)、 久保英夫(北大)、坂上貴之(京大)、神保秀一(北大)、高岡秀夫(北大)、 津田谷公利(弘前大)、利根川吉廣(東工大) 80名参加.
  • 2019/07 -2019/07 ミニシンポジウム, Mathematical modeling, simulations and theories related to biological phenomena - Part 1, 20190715, 17:00-19:00, Room: FT-2-2, Mathematical modeling, simulations and theories related to biological phenomena - Part 2
    Organizer: Yoshihisa Morita Organizer: Shin-ichiro Ei Organizer: Masaharu Nagayama ICIAM2019, JULY 15-19, Valencia, Spain
  • 2019/05 -2019/05 ミニシンポジウム MS169 Recent Developments in Dynamics of Localized Patterns - Part I, MS169 Recent Developments in Dynamics of Localized Patterns - Part I
    20190523, 8:30 AM - 10:10 AM Room: Superior B Organizer: Shin-Ichiro Ei Hokkaido University, Japan Takashi Teramoto Asahikawa Medical University, Japan Peter van Heijster Queensland University of Technology, Australia SIAM Conference on Applications of Dynamical Systems (DS19) May 19 - 23, 2019
  • 2019/02 -2019/02 反応拡散系と実験の融合 2
    文部科学省委託事業 AIMaP (受託拠点:九州大学 IMI)の支援, 栄伸一郎(北海道大学・理学研究院) 長山雅晴(北海道大学・電子科学研究 所) 日時:2019年2月18日(月)16:00~2月20日(水)18:00 場所:石川県政記念しいのき迎賓館 セミナールームB, 33名参加.
  • 2018/07 -2018/07 Second Joint Australia-Japan workshop on dynamical systems with applications in life science
    2018/7/15-7/17 美瑛白金四季の森ホテルパークヒルズ https://sites.google.com/view/australia-japan-ws-dsals2/home 23名参加
  • 2018/02 -2018/02 反応拡散系と実験の融合
    文部科学省委託事業 AIMaP 支援研究集会, 日時:2018年2月21日(水)10:00~2月22日(木)18:00 場所:石川県政記念しいのき迎賓館 セミナールームA 〒920-0962 石川県金沢市広坂2丁目1番1号 TEL:076-261-1111, 組織委員, 栄伸一郎(北海道大学・理学研究院) 長山雅晴(北海道大学・電子科学研究所) 34名参加.
  • 2017/10 -2017/10 formation problems with non-local effects
    2017-10-7, 15:30 - 17:00, Seminar Room 2, オーガナイズドセッション S12, 組織委員,栄伸一郎・田中吉太郎 (北大・理) 第27回日本数理生物学会大会(JSMB17, Sapporo) 日時:2017年10月6日(金)~8日(日) 場所:北海道大学工学部フロンティア応用科学研究棟
  • 2017/10 -2017/10 New mathematical approaches for understanding of biological phenomena
    2017-10-07, 14:00 - 15:30, Seminar Room 2, オーガナイズドセッション S10, 組織委員,栄伸一郎、長山雅晴 (北海道大学) 森田善久 (龍谷大学) 第27回日本数理生物学会大会(JSMB17, Sapporo) 日時:2017年10月6日(金)~8日(日) 場所:北海道大学工学部フロンティア応用科学研究棟
  • 2017/10 -2017/10 Patterns and dynamics with nonlocal effect, CREST WS
    2017-10-4 to 2017-10-5 定山渓ビューホテル. 組織委員 栄伸一郎・田中吉太郎 (北大・理), 16名参加
  • 2017/09 -2017/09 連続と離散を繋ぐ数理解析
    オーガナイズドセッション, 日本応用数理学会2017年度 年会 武蔵野大学 有明キャンパス 2017年9月6~8日 組織委員:栄 伸一郎, 長山雅晴
  • 2017/08 -2017/08 One-day Workshop on Reaction-Diffusion Equations at Asahikawa 2
    Monday afternoon, August 21 th to Tuesday morning, August 22 th, 2017, Organizers: Shin-Ichiro Ei,Department of Mathematics, Hokkaido University Takashi Teramoto, School of Medicine, Asahikawa Medical University Place: Asahikawa Tokiwa City Hall, Room 302, 5 jyo-dori 4 chome, Asahikawa 070-0035, Japan, 6名参加 http://www.asahikawa-dpc.co.jp/7Tokiwa/tokiwaindex.html
  • 2016/08 -2016/08 第41回偏微分方程式論札幌シンポジウム
    2016年8月8日(月)~10日(水) 会場:北海道大学 学術交流会館1階 小講堂 http://www.math.sci.hokudai.ac.jp/sympo/sapporo/program160808.html 組織委員:栄伸一郎、久保英夫 プログラム委員:栄伸一郎(北大)、小澤徹(早大)、儀我美一(東大)、 久保英夫(北大)、坂上貴之(京大)、神保秀一(北大)、高岡秀夫(北大)、 津田谷公利(弘前大)、利根川吉廣(東工大) 75名参加.
  • 2016/08 -2016/08 Patterns and Waves 2016
    北海道大学学術交流会館 http://www.wpi-aimr.tohoku.ac.jp/mathematics_unit/english/Pattern_and_Waves_2016/resis.htm Organizers: Yasumasa Nishiura (Tohoku University): Chair Shin-Ichiro Ei (Hokkaido University) Masaharu Nagayama (Hokkaido University) Yasu Hiraoka (Tohoku University) 100名以上参加:
  • 2016/07 -2016/07 Joint Australia-Japan workshop on dynamical systems with applications in life sciences
    18 July - 21 July, 2016, Queensland University of Technology, Brisbane, Queensland, Australia, 組織委員: Peter van Heijster, Queensland University of Technology, Australia Shin-Ichiro Ei, Hokkaido University, Japan Takashi Teramoto, Asahikawa Medical University, Japan, https://sites.google.com/site/petervanheijster/workshop 23名参加
  • 2015/12 -2015/12 「多変数反応拡散系の数理とその周辺」
    http://www.math.sci.hokudai.ac.jp/~Eichiro/Conference/MultiRD2015/WS2015-12.html 日時:12月25日、26日 場所:神戸大学海事科学部、深江キャンパス 4 号館 4207 教室 アクセス: http://www.maritime.kobe-u.ac.jp/map/ 主催者: 栄 伸一郎 (JST, CREST, 北海道大学), 桑村 雅隆(神戸大学) 27名参加.
  • 2015/11 -2015/11 The 11th HU and SNU Symposium on Mathematics,Mathematical analysis and applications
    Organizers: Shin-Ichiro Ei(HU), Nam-Gyu Kang (Seoul National Univ.), November 27, 2015, Satellite Sessions of The 18th SNU-HU Joint Symposium, Soeul National University in Cooperation with Hokkaido University November 26 - 27,2015.
  • 2015/09 -2015/09 ミニワークショップ, 分化の波の実験と数理モデル
    日時:9/2(水) 13:30 - 京都駅前キャンパスプラザ(6階第7講習室) http://www.consortium.or.jp/about-cp-kyoto/access 主催者: 栄 伸一郎 (JST, CREST) 13名参加.
  • 2015/08 -2015/08 第40回偏微分方程式論札幌シンポジウム
    2015年8月19日(水)~21日(金)北海道大学理学部 7号館講義室(7-310室) http://www.math.sci.hokudai.ac.jp/sympo/sapporo/program150819.html 組織委員: 栄伸一郎(北大)、高岡秀夫(北大)
  • 2015/08 -2015/08 Mathematical Modeling and the analysis in dissipative systems
    Organizers: SHIN-ICHIRO EI*; Masaharu Nagayama (10665; 10756) Date: August 14 Time: 13:30--15:30 Room: Room 9 , Date: August 14 Time: 16:00--18:00 Room: Room 9 Minisymposia in The 8th International Congress on Industrial and applied mathematics, August 10-14, 2015, Beijing, China.
  • 2015/07 -2015/07 One-day Workshop on Reaction-Diffusion Equations at Asahikawa from Wednesday afternoon
    July 15th to Thursday morning, July 16th, 2015 Place: Asahikawa Medical University, 2-1-1-1, Midorigaoka-higashi, Asahikawa 078-8510, Japan, Organizers: Takashi Teramoto, School of Medicine, Asahikawa Medical University, Shin-Ichiro Ei, Department of Mathematics, Hokkaido University 5名参加.
  • 2014/11 -2014/11 非線形偏微分方程式冬の学校'14 in 札幌
    http://www2.math.kyushu-u.ac.jp/~tohru/winter_school/ 日時: 2014年11月21日(金), 22日(土) 場所: 北海道大学理学部5号館305号室 組織委員: (連絡先) 組織委員: 栄 伸一郎 (北海道大, Eichiro@math.sci.hokudai.ac.jp) 西畑 伸也 (東工大, shinya@is.titech.ac.jp) 隠居 良行 (九州大, kagei@math.kyushu-u.ac.jp) 中村 徹 (熊本大, tohru@kumamoto-u.ac.jp) 上田 好寛 (神戸大, ueda@maritime.kobe-u.ac.jp) 34名参加
  • 2014/01 -2014/01 第31回 九州における偏微分方程式研究集会
    日時:2014 年1 月27 日(月)14:00 ~ 1 月29 日(水)17:00 場所:福岡大学メディカルホール 世話人川島秀一(九州大・数理) 山田直記(福岡大・理) 栄伸一郎(九州大・IMI) 杉山由恵(九州大・数理) 隠居良行(九州大・数理)
  • 2013/12 -2013/12 SGW2013数学協働プログラム-- 複雑現象の数理モデル --
    http://sgw2013cmp.imi.kyushu-u.ac.jp/ 12月2日-12月4日, 九大伊都キャンパス, 大学院生 13名、ポスドク 5名、 教員その他スタッフ 20名, 組織委員会 栄 伸一郎(代表者), 溝口 佳寛, 脇 隼人, 渋田 敬史 (九州大学マス・フォア・インダストリ研究所数学理論先進ソフトウェア開発室)
  • 2013/09 -2013/09 「数学ソフトウェアの開発と実践-その現状と未来-」
    http://imi.kyushu-u.ac.jp/lasm/ws2013/ 2013年9月9日 15:00~18:10, 9月10日 10:00~11:30, アクロス福岡 国際会議場, 組織委員: 栄 伸一郎 ( 溝口 佳寛, 脇 隼人, 渋田敬史 ), 参加者 72名, 講演者・発表者等 6名、一般参加者 66名 (うち、大学関係者名51, 企業19名, その他2名).
  • 2013/02 -2013/02 北陸応用数理研究会2013
    中村健一 (金沢大学・理工研究域・数物科学系) 栄伸一郎(九州大学・マスフォアインダストリ) 池田榮雄(富山大学・理学研究科) 長山雅晴(北海道大学・電子科学研究所) 日時:2013年2月14日(木)13:00~2月16日(土)12:30 場所:金沢大学 サテライト・プラザ(金沢市西町教育研修館内)3階集会室 〒920-0913 金沢市西町3番丁16番地 参加者: 25名
  • 2013/01 -2013/01 第30回 九州における偏微分方程式研究集会
    日時:2013年 1月29日(火)14:00~31日(木)17:00 会場:福岡大学2号館221教室 \\ 世話人: 川島秀一(九州大・数理) 山田直記(福岡大・理) 栄伸一郎(九州大・MI 研究所) 隠居良行(九州大・数理)
  • 2012/12 -2012/12 九州非線形偏微分方程式冬の学校'12 in 神戸
    http://www2.math.kyushu-u.ac.jp/~tohru/winter_school/ 日時: 12月1日(土), 2日(日) 場所: 神戸大学大学院海事科学研究科*海事科学部 講義・研究棟4号館 4301教室 住所:〒658-0022 神戸市東灘区深江南町5丁目1-1 http://www.maritime.kobe-u.ac.jp アクセス: http://www.maritime.kobe-u.ac.jp/map 組織委員: (連絡先) 栄 伸一郎 ichiro@math.kyushu-u.ac.jp 西畑 伸也 shinya@is.titech.ac.jp 隠居 良行 kagei@math.kyushu-u.ac.jp 中村 徹 tohru@math.kyushu-u.ac.jp 上田 好寛 ueda@math.tohoku.ac.jp 35名参加
  • 2012/11 -2012/11 平成24年度数学・数理科学と諸科学・産業との連携研究ワークショップ ネットワーク構造と生命現象
    2012年11月2日13:30 - 11月3日15:00, JR博多シティ, 大会議室 栄 伸一郎, 平岡 裕章 25名参加
  • 2012/03 -2012/03 ワークショップ「偏微分方程式の最近の話題2012 in 別府」
    日程:2012年3月18日 - 19日 会場:別府国際コンベンションセンター小会議室31 組織委員: 栄 伸一郎, 木村 正人, 村川 秀樹, 平岡 裕章(九州大学), 辻川 亨(宮崎大学), 永井 敏隆(広島大学), 三村 昌泰(明治大学) 33名参加
  • 2012/01 -2012/01 第29回 九州における偏微分方程式研究集会
    日時:2012年 1月23日(月)14:00~25日(水)17:00 会場:九州大学 西新プラザ大会議室 福岡市早良区西新2-16-23, TEL : 092-831-8104 福岡市営地下鉄西新駅下車徒歩10分 世話人: 川島秀一(九州大・数理) 栄伸一郎(九州大・数理) 隠居良行(九州大・数理)
  • 2011/11 -2011/11 平成23年度数学・数理科学と諸科学・産業との連携研究ワークショップ 数理モデルの産業・諸科学への活用 -数理モデルの夢-
    2011年11月30日10:30 - 12月2日16:50, 富士通汐留シティセンター 富士通株式会社 大会議室 西井 龍映(運営責任者) 栄 伸一郎 穴井 宏和
  • 2011/11 -2011/11 シンポジウム「創発と自己組織化-魅惑の非線形」研究会
    日程:2011年11月21日(月)-22日(火) 会場:九州大学西新プラザ(福岡市早良区西新2-16-23) 世話人 甲斐 昌一(九州大学大学院工学研究院) 栄伸一郎(九州大学大学院数理学研究院) 日高 芳樹(九州大学大学院工学研究院)
  • 2011/09 -2011/09 Nonlinear dynamics in partial differential equations
    http://mathsoc.jp/meeting/msjsi11/ 2011年9月12日(月) ― 21日(水) 場所:九州大学医学部百年記念講堂 組織委員:Shin-Ichiro Ei (Kyushu University)(委員長), Ryo Ikehata (Hiroshima University), Yoshiyuki Kagei (Kyushu University), Shuichi Kawashima (Kyushu University), Takayuki Kobayashi (Saga University), Masashi Misawa (Kumamoto University), Takasi Senba (Kyushu Institute of Technology), Tohru Tsujikawa (University of Miyazaki), Naoki Yamada (Fukuoka University) 203名参加(海外39名)
  • 2011/01 -2011/01 第28回 九州における偏微分方程式研究集会
    日時:2011年 1月24日(月)14:00~26日(水)17:00 会場:九州大学 西新プラザ大会議室 福岡市早良区西新2-16-23, TEL : 092-831-8104 福岡市営地下鉄西新駅下車徒歩10分 (http://www.kyushu-u.ac.jp/university/institution-use/nishijin/ index.htm) 世話人: 川島秀一(九州大・数理) 栄伸一郎(九州大・数理) 隠居良行(九州大・数理)
  • 2010/12 -2010/12 九州非線形偏微分方程式・冬の学校
    主催者: 栄 伸一郎(九州大・数理), 西畑伸也(東京工大・情報理工) 隠居良行(九州大・数理), 中村 徹 (九州大・数理) 上田好寛(東北大・理) 開催場所:福岡市中央区, 福大セミナーハウス 開催日時:2010年12月10日, 11日 (予備講義 12/9) 報告集の有無と入手可能な場合の連絡先: 無 (講演資料が http://www2.math.kyushu-u.ac.jp/~tohru/winter_school_10/ から入手可能) 72名参加
  • 2010/06 -2010/06 World of Emerging Phenomena 2
    日時:2010年6月11日(金) 13:00~17:10 会場:九州大学医学部百年記念講堂 中ホール3 組織委員 主催者(所属):甲斐昌一 (九州大学 大学院工学研究院), 山口智彦(産業技術総合研究所), 栄伸一郎(九州大学 大学院数理学研究院), 日高芳樹(九州大学 大学院工学研究院) 47名参加
  • 2010/04 -2010/04 研究集会「偏微分方程式の最近の話題2010 in 別府」
    日時: 平成22 年4 月3 日13 時30 分から4 月4 日11 時30 分まで 会場: 別府国際コンベンションセンター (大分県別府市山の手町12 番1 号、http://www.b-conplaza.jp) 組織委員: 栄伸一郎(九州大学) 大沼正樹(徳島大学) 観音幸雄(愛媛大学) 辻川 亨(宮崎大学)[代表] 中木達幸(広島大学)[事務局] 長山雅晴(金沢大学)
  • 2010/01 -2010/01 第27回「九州における偏微分方程式」研究集会
    主催者:川島秀一(九州大・数理) 栄伸一郎(九州大・数理) 隠居良行(九州大・数理) 開催場所:九州大学西新プラザ 開催日時:2010年1月25日 - 27日 報告集の有無と入手可能な場合の連絡先: 無 (講演資料が http://www2.math.kyushu-u.ac.jp/FE-Seminar/kyu-pde-10/ から入手可能) 約90名参加
  • 2010/01 -2010/01 「九州における偏微分方程式」研究集会
    九州大学西新プラザ, 2010年1月25日 - 27日
  • 2009/11 -2009/11 九州非線形偏微分方程式・冬の学校
    主催者:栄 伸一郎(九州大・数理), 西畑伸也(東京工大・情報理工) 隠居良行(九州大・数理), 中村 徹 (九州大・数理) 上田好寛(東北大・理) 開催場所:福岡市中央区, 福大セミナーハウス 開催日時:2009年11月6日, 7日 報告集の有無と入手可能な場合の連絡先: 無 (講演資料が http://www2.math.kyushu-u.ac.jp/~tohru/winter_school_09/ から入手可能) 65名参加
  • 2009/11 -2009/11 九州非線形偏微分方程式・冬の学校
    組織委員長 日時:2009年11月6日, 7日 場所:福岡市中央区, 福大セミナーハウス
  • 2009/10 -2009/10 「創発現象の世界」
    主催者(所属):甲斐昌一 (九州大学 大学院工学研究院), 山口智彦(産業技術総合研究所), 栄伸一郎(九州大学 大学院数理学研究院), 日高芳樹(九州大学 大学院工学研究院), 木村正人(九州大学 大学院数理学研究院) 開催場所:九州大学西新プラザ 開催時期:2009年10月16日, 17日 報告集の有無と入手可能な場合の連絡先: 無 (講演資料が http://www2.math.kyushu-u.ac.jp/~masato/nl/nl-wep.html から入手可能) 約40名参加
  • 2009/10 -2009/10 ワークショップ「創発現象の世界」
    日時:2009年10月16日, 17日 会場:九州大学西新プラザ
  • 2009/01 -2009/01 「九州における偏微分方程式」研究集会
    九州大学 箱崎キャンパス 国際ホール, 2009年1月26日 - 28日
  • 2008/11 -2008/11 九州非線形偏微分方程式・冬の学校
    組織委員長 日時:11月21日 - 22日 場所:福岡市東区箱崎九州大学箱崎キャンパス工学部本館3F10番講義室 88名参加
  • 2008/06 -2008/06 「パターンダイナミクスの数理とその周辺」- 界面あるいは振動子系に現れる時・空間パターンに関連して -
    研究代表者 日時:6月25日2:00 - 6月27日正午 会場:京都大学数理解析研究所420号室
  • 2008/01 -2008/01 「九州における偏微分方程式」研究集会
    九州大学 箱崎キャンパス 国際ホール, 2008年1月28日 - 30日.
  • 2007/12 -2007/12 九州非線形偏微分方程式「冬の学校」
    組織委員長, 九州大学箱崎キャンパス 理学部2号館2F大会議室, 2007.12.6, 7. 70名
  • 2007/09 -2007/09 非線形数理 「秋の学校」
    組織委員長, 明治大学秋葉原サテライトキャンパス(東京), 2007.9.25 - 27.
  • 2007/01 -2007/01 「九州における偏微分方程式」研究集会
    九州大学 箱崎キャンパス 国際ホール, 2007年1月29日 - 31日.
  • 2006/04 -2006/04 工学における非線形性
    九州大学西新プラザ, 組織委員長. 2006年4月3日-4日
  • 2006/03 -2006/03 非線形数理小研究集会
    九州大学西新プラザ, 2006年3月7日(火曜日)10:00--17:40.
  • 2006/01 -2006/01 「九州における偏微分方程式」研究集会
    九州大学 箱崎キャンパス 国際ホール, 2006.1.30 - 2.1.
  • 2005/10 -2005/10 物理における非線形性
    九州大学西新プラザ, 組織委員長 2005年10月28日-29日
  • 2005/07 -2005/07 生物における非線形性
    九州大学西新プラザ, 組織委員長 2005年7月1日-2日
  • 2005/02 -2005/02 「九州における偏微分方程式」研究集会
    九州大学 箱崎キャンパス 国際ホール, 2005.1.26 - 28.
  • 2004/12 -2004/12 「非線形数理」冬の学校
    東工大 大岡山キャンパス西8号館W1008号室, 2004.12.16 - 17
  • 2004/11 -2004/11 Mini Symposium「走性の数理」
    企画者, 「生物数学の理論とその応用」 京都大学数理解析研究所共同研究集会 研究代表者 竹内康博(静岡大), 1 F 115 号室, 15:20 - 17:50, 3講演, 2004.11.30.


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.