Jens Kattge, Gerhard Bönisch, Sandra Díaz, Sandra Lavorel, Iain Colin Prentice, Paul Leadley, Susanne Tautenhahn, Gijsbert D.A. Werner, Tuomas Aakala, Mehdi Abedi, Alicia T.R. Acosta, George C. Adamidis, Kairi Adamson, Masahiro Aiba, Cécile H. Albert, Julio M. Alcántara, Carolina Alcázar C, Izabela Aleixo, Hamada Ali, Bernard Amiaud, Christian Ammer, Mariano M. Amoroso, Madhur Anand, Carolyn Anderson, Niels Anten, Joseph Antos, Deborah Mattos Guimarães Apgaua, Tia Lynn Ashman, Degi Harja Asmara, Gregory P. Asner, Michael Aspinwall, Owen Atkin, Isabelle Aubin, Lars Baastrup-Spohr, Khadijeh Bahalkeh, Michael Bahn, Timothy Baker, William J. Baker, Jan P. Bakker, Dennis Baldocchi, Jennifer Baltzer, Arindam Banerjee, Anne Baranger, Jos Barlow, Diego R. Barneche, Zdravko Baruch, Denis Bastianelli, John Battles, William Bauerle, Marijn Bauters, Erika Bazzato, Michael Beckmann, Hans Beeckman, Carl Beierkuhnlein, Renee Bekker, Gavin Belfry, Michael Belluau, Mirela Beloiu, Raquel Benavides, Lahcen Benomar, Mary Lee Berdugo-Lattke, Erika Berenguer, Rodrigo Bergamin, Joana Bergmann, Marcos Bergmann Carlucci, Logan Berner, Markus Bernhardt-Römermann, Christof Bigler, Anne D. Bjorkman, Chris Blackman, Carolina Blanco, Benjamin Blonder, Dana Blumenthal, Kelly T. Bocanegra-González, Pascal Boeckx, Stephanie Bohlman, Katrin Böhning-Gaese, Laura Boisvert-Marsh, William Bond, Ben Bond-Lamberty, Arnoud Boom, Coline C.F. Boonman, Kauane Bordin, Elizabeth H. Boughton, Vanessa Boukili, David M.J.S. Bowman, Sandra Bravo, Marco Richard Brendel, Martin R. Broadley, Kerry A. Brown, Helge Bruelheide, Federico Brumnich, Hans Henrik Bruun, David Bruy, Serra W. Buchanan, Solveig Franziska Bucher, Nina Buchmann, Robert Buitenwerf, Daniel E. Bunker, Jana Bürger
Global Change Biology 26 (1) 119 - 188 1354-1013 2020/01/01
© 2019 The Authors. Global Change Biology published by John Wiley & Sons Ltd Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.