Researcher Database

Hideo Kubo
Faculty of Science Mathematics Mathematics
Professor

Researcher Profile and Settings

Affiliation

  • Faculty of Science Mathematics Mathematics

Job Title

  • Professor

J-Global ID

Research Interests

  • 散乱理論   非線型波動   Scattering theory   Nonlinear Wave   

Research Areas

  • Natural sciences / Basic analysis

Academic & Professional Experience

  • 2012/10 - Today Hokkaido University
  • 2008/10 - 2012/09 Tohoku University
  • 2003/04 - 2008/09 Osaka University
  • 1997/04 - 2003/03 Shizuoka University
  • 1996/04 - 1997/03 Shizuoka University

Education

  •        - 1996/03  Hokkaido University
  •        - 1991  Hokkaido University  School of Science

Association Memberships

  • 日本数学会   日本数学会   

Research Activities

Published Papers

  • Modification of the vector-field method related to quadratically perturbed wave equations in two space dimensions
    KUBO Hideo
    "Advanced Studies in Pure Mathematics 81, 2019 Asymptotic Analysis for Nonlinear Dispersive and Wave Equations" 81 139 - 172 2019 [Refereed][Not invited]
  • V. Georgiev, H. Kubo, K. Wakasa
    J. Differential Equations 267 3271 - 3288 2019 [Refereed][Not invited]
  • H. Kubo, T. Ogawa, T. Suguro
    Proceedings of the American Mathematical Society Vol. 147 (4) 1511 - 1518 2019 [Refereed][Not invited]
  • Yusuke Takeichi, Tatsuya Uebi, Naoyuki Miyazaki, Kazuyoshi Murata, Kouji Yasuyama, Kanako Inoue, Toshinobu Suzaki, Hideo Kubo, Naoko Kajimura, Jo Takano, Toshiaki Omori, Ryoichi Yoshimura, Yasuhisa Endo, Masaru K. Hojo, Eichi Takaya, Satoshi Kurihara, Kenta Tatsuta, Koichi Ozaki, Mamiko Ozaki
    Front. Cell. Neurosci. 12 (310) 1 - 15 2018/09 [Refereed][Invited]
  • Localization of innexins in the antennae of the Japanese carpenter ant, Camponotus japonicus and its putative involvement in the chemosensory mechanism for nestmate-nonnestmate discrimination
    Tatsuya Uebi, Yusuke Takeichi, Kouji Yasuyama, Naoyuki Miyazaki, Kazuyoshi Murata, Satoshi Kurihara, Eichi Takaya, Hideo Kubo, Toshiaki Omori, Mamiko Ozaki
    CHEMICAL SENSES 43 (5) E142 - E142 0379-864X 2018/06 [Refereed][Not invited]
  • Ryunosuke Minami, Chiaki Sato, Yumi Yamahama, Hideo Kubo, Takahiko Hariyama, Ken-Ichi Kimura
    Zoological science 33 (6) 583 - 591 0289-0003 2016/12 [Refereed][Not invited]
     
    The "moth-eye" structure, which is observed on the surface of corneal lens in several insects, supports anti-reflective and self-cleaning functions due to nanoscale protrusions known as corneal nipples. Although the morphology and function of the "moth-eye" structure, are relatively well studied, the mechanism of protrusion formation from cell-secreted substances is unknown. In Drosophila melanogaster, a compound eye consists of approximately 800 facets, the surface of which is formed by the corneal lens with nanoscale protrusions. In the present study, we sought to identify genes involved in "moth-eye" structure, formation in order to elucidate the developmental mechanism of the protrusions in Drosophila. We re-examined the aberrant patterns in classical glossy-eye mutants by scanning electron microscope and classified the aberrant patterns into groups. Next, we screened genes encoding putative structural cuticular proteins and genes involved in cuticular formation using eye specific RNAi silencing methods combined with the Gal4/UAS expression system. We identified 12 of 100 candidate genes, such as cuticular proteins family genes (Cuticular protein 23B and Cuticular protein 49Ah), cuticle secretion-related genes (Syntaxin 1A and Sec61 ββ subunit), ecdysone signaling and biosynthesis-related genes (Ecdysone receptor, Blimp-1, and shroud), and genes involved in cell polarity/cell architecture (Actin 5C, shotgun, armadillo, discs large1, and coracle). Although some of the genes we identified may affect corneal protrusion formation indirectly through general patterning defects in eye formation, these initial findings have encouraged us to more systematically explore the precise mechanisms underlying the formation of nanoscale protrusions in Drosophila.
  • Hideo Kubo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS 14 (4) 1469 - 1480 1534-0392 2015/07 [Refereed][Not invited]
     
    In this paper we derive a new type of pointwise decay estimates for solutions to the Cauchy problem for the wave equation in 2D, in the sense that one can diminish the weight in the time variable for the forcing term if it is compactly supported in the spatial variables. As an application of the estimate, we also establish an improved decay estimate for the solution to the exterior problem in 2D.
  • On the exterior problem for nonlinear wave equations with small initial data
    KUBO Hideo
    Adv. Stud. Pure Math. 64 281 - 288 2015 [Refereed][Not invited]
  • Hideo Kubo
    JOURNAL OF DIFFERENTIAL EQUATIONS 257 (8) 2765 - 2800 0022-0396 2014/10 [Refereed][Not invited]
     
    In this paper we deal with the exterior problem for a system of nonlinear wave equations in two space dimensions, assuming that the initial data is small and smooth. We establish the same type of lower bound of the lifespan for the problem as that for the Cauchy problem, despite of the weak decay property of the solution in two space dimensions. (C) 2014 Elsevier Inc. All rights reserved.
  • Global existence for quadratically perturbed massless Dirac equations under the null condition
    S. Katayama, H. Kubo
    Fourier Analysis: Pseudo-Differential Operators,Time-Frequency Analysis and Partial Differential Equations(edited by M. Ruzhansky and V. Turunen) 253 - 262 2014 [Refereed][Not invited]
  • Soichiro Katayama, Hideo Kubo, Sandra Lucente
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS 12 (6) 2331 - 2360 1534-0392 2013/11 [Refereed][Not invited]
     
    The aim of this article is to prove an "almost" global existence result for some semilinear wave equations in the plane outside a bounded convex obstacle with the Neumann boundary condition.
  • Hideo Kubo
    EVOLUTION EQUATIONS AND CONTROL THEORY 2 (2) 319 - 335 2163-2480 2013/06 [Refereed][Not invited]
     
    In this paper we deal with the exterior problem for a system of nonlinear wave equations in two space dimensions under some geometric restriction on the obstacle. We prove a global existence result for the problem with small and smooth initial data, provided that the nonlinearity is taken to be cubic and satisfies the null condition.
  • Global existence and blow-up for wave equations with weighted nonlinear terms in one space dimension
    Hideo KUBO, Ayako OSAKA, Muhammet YAZICI
    Interdisciplinary Information Sciences 19 143 - 148 2013 [Refereed][Not invited]
  • Soichiro KATAYAMA, KUBO Hideo
    J. Hyper. Differential Equations, 10 1 - 36 2013 [Refereed][Not invited]
  • Hideo Kubo, Kôji KUBOTA
    Hokkaido Mathematical Journal 42 81 - 111 2013 [Refereed][Not invited]
  • Yury M. Korolev, Hideo Kubo, Anatoly G. Yagola
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS 20 (3) 327 - 337 0928-0219 2012/09 [Refereed][Not invited]
     
    We consider an inverse problem of parameter identification for a parabolic equation. The underlying practical example is the reconstruction of the unknown drift in the extended Black-Scholes option pricing model. Using a priori information about the unknown solution (i.e. its Lipschitz constant), we provide a solution to this non-linear ill-posed problem, as well as an error estimate. Other types of a priori information may be used (for example, monotonicity and/or convexity of the unknown solution).
  • Lower bounds for the lifespan of solutions to nonlinear wave equations in elasticity
    Hideo Kubo
    Evolution Equations of Hyperbolic and Schrodinger Type (Progress in Math. 301) 187 - 212 2012 [Refereed][Not invited]
  • A remark on long range effect for a system of semilinear wave equation
    Hideo Kubo, Motoharu Takaki
    Rendiconti dell'Istituto di Matematica dell'Universita di Trieste 2010 [Not refereed][Not invited]
  • Soichiro Katayama, Hideo Kubo
    Funkcial. Ekvac. 2010 [Not refereed][Not invited]
  • On the large time behavior of solutions to semilinear system of the wave equation
    Soichiro Katayama, Hideo Kubo
    Proceedings of the 5th International ISSAC congress 2009 [Not refereed][Not invited]
  • Soichiro Katayama, Hideo Kubo
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN 60 (4) 1135 - 1170 0025-5645 2008/10 [Refereed][Not invited]
     
    The aim of this article is to present a simplified proof of a global existence result for systems of nonlinear wave equations in an exterior domain. The novelty of our proof is to avoid completely the scaling operator which would make the argument complicated in the mixed problem, by using new weighted pointwise estimates of a tangential derivative to the light cone.
  • Soichiro Katayama, Hideo Kubo
    Indiana University Mathematics Journal 57 (1) 377 - 400 0022-2518 2008 [Not refereed][Not invited]
     
    We consider the Cauchy problem for a class of systems of semilinear wave equations, which is closely connected to the weak null condition and Alinhac's condition. We show that the energy of some global solutions to these systems grows to infinity as time tends to infinity and consequently these solutions never approach any free solutions. Indiana University Mathematics Journal ©.
  • Soichiro Katayama, Hideo Kubo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS 39 (6) 1851 - 1862 0036-1410 2008 [Not refereed][Not invited]
     
    We consider wave equations in three space dimensions and obtain new weighted L-infinity-L-infinity estimates for a tangential derivative to the light cone. As an application, we give a new proof of the global existence theorem, which was originally proved by Klainerman and Christodoulou, for systems of nonlinear wave equations under the null condition. Our new proof has the advantage of using neither the scaling nor the Lorentz boost operators.
  • Asymptotic behavior of solutions to semilinear wave equations with dissipative structure
    Hideo Kubo
    Discrete and Continuous Dynamical Systems Supplement, 602-613 2007 [Not refereed][Not invited]
  • Uniform decay estimates for the wave equation in an exterior domain
    Hideo Kubo
    "Asymptotic analysis and singularities", Advanced Studies in Pure Mathematics 47-1 31-54 2007 [Not refereed][Not invited]
  • Note on weighted Strichartz estimates for Klein-Gordon equations with potential
    Hideo Kubo, S.Lucente
    Tsukuba J. Math 31, 143-173 2007 [Not refereed][Not invited]
  • Hideo Kubo, Koji Kubota
    CHINESE ANNALS OF MATHEMATICS SERIES B 27 (5) 507 - 538 0252-9599 2006/09 [Not refereed][Not invited]
     
    This paper is concerned with a class of semilinear hyperbolic systems in odd space dimensions. Our main aim is to prove the existence of a small amplitude solution which is asymptotic to the free solution as t --> -infinity in the energy norm, and to show it has a free profile as t --> +infinity. Our approach is based on the work of [11]. Namely we use a weighted L-infinity norm to get suitable a priori estimates. This can be done by restricting our attention to radially symmetric solutions. Corresponding initial value problem is also considered in an analogous framework. Besides, we give an extended result of [14] for three space dimensional case in Section 5, which is prepared independently of the other parts of the paper.
  • H Kubo, K Kubota, H Sunagawa
    MATHEMATISCHE ANNALEN 335 (2) 435 - 478 0025-5831 2006/06 [Not refereed][Not invited]
     
    This paper is concerned with the initial value problem for semilinear systems of wave equations. First we show a global existence result for small amplitude solutions to the systems. Then we study asymptotic behavior of the global solution. We underline that "modified" free profiles are obtained for all global solutions to the systems even in the case where the free profile might not exist. Moreover, we prove non-existence of any free profiles for the global solution in some cases where the effect of the nonlinearity is strong enough.
  • Blowup for systems of semilinear wave equations in two space dimensions
    H. Kubo, M. Ohta
    Hokkaido Math. J. 35, 697--717 2006 [Not refereed][Not invited]
  • H. Kubo, M. Ohta
    Funkcial. Ekvac. 48, 65-98 2005 [Not refereed][Not invited]
  • On the global behavior of classical solutions to coupled systems of semilinear wave equations, in “New trends in the theory of hyperbolic equations”
    Hideo Kubo, Masahito Ohta
    Operator Theory Adv. and Appl., Birkh¨auser Verlag 159 113 - 211 2005 [Refereed][Not invited]
  • GLOBAL SOLVABILITY FOR SYSTEMS OF NONLINEAR WAVE EQUATIONS WITH MULTIPLE SPEEDS IN TWO SPACE DIMENSIONS
    Akira Hoshiga, Hideo Kubo
    DIFFERENTIAL AND INTEGRAL EQUATIONS 17 (5-6) 593 - 622 0893-4983 2004/05 [Refereed][Not invited]
     
    In this paper we deal with systems of nonlinear wave equations in two space dimensions. When the system has common propagation speeds and cubic nonlinearity, the small data global existence result was obtained by Katayama [9], provided that the cubic part of Taylor's expansion for the nonlinearity satisfies the so-called null condition. The aim of this paper is to extend the result to the case where the system has multiple speeds of propagation. To realize this, we make use of a kind of Hardy's inequality given in Lemma 2.2 below, which creates the loss of decay but only with respect to (1 + parallel to x vertical bar - c(i)t vertical bar). Thus we are able to absorb such a loss by means of the decay estimates in Proposition 4.2 below.
  • On point-wise decay estimates for the wave equation and their applications in "Dispersive Nonlinear Problems in Mathematical Physics"
    KUBO Hideo
    Quaderni di Matematica, Seconda Universit´a di Napoli 15 2004 [Refereed][Not invited]
  • 準線型波動方程式系に対する存在定理 (非線形波動および分散型方程式に関する研究)
    久保 英夫, 星賀 彰
    数理解析研究所講究録 1355 1 - 23 2004 [Not refereed][Not invited]
  • Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions
    H Kubo, K Tsugawa
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS 9 (2) 471 - 482 1078-0947 2003/03 [Not refereed][Not invited]
     
    In this paper, we treat the coupled system of wave equations whose nonlinearities are \u\(pj)\v\(qj) and propagation speeds may be different from each other. We study the lower bounds of p(j) and q(j) to assure the global existence of a class of small amplitude solutions which includes self-similar solutions. The exponent of self-similar solutions plays crucial role to find the lower bounds. Moreover, we prove that the discrepancy of propagation speeds allow us to bring them down. Conversely, if such conditions for the global existence do not hold, then no self-similar solution exists even for small initial data.
  • 半線型波動方程式系に対する存在定理(非線型双曲型方程式系の解の挙動に関する研究)
    久保 英夫
    数理解析研究所講究録 1331 50 - 66 2003 [Not refereed][Not invited]
  • On the small data global existence and scattering for systems of semilinear wave equations
    Hideo Kubo
    Hyperbolic problems and related topics 219 - 234 2003 [Refereed][Not invited]
  • Coupled system of semilinear wave equations
    Hideo Kubo
    Lecture Notes of Seminario Interdisciplinare di Matematica 75 - 85 2003 [Refereed][Not invited]
  • Seattering for systems of semilinear wave educations with diffrent speeds of propagation(共著)
    H. Kubo, K.Kubota
    Adv. Difference Equations 7, 441-468/, 2002 [Not refereed][Not invited]
  • Time-local well-posedness of (1 + 2)-dimensional wave-map type equations and the null condition(On well-posedness and regularity of solutions to partial differential equations)
    Hideo Kubo
    数理解析研究所講究録 1284 16 - 31 2002 [Not refereed][Not invited]
  • P D'Ancona, Georgiev, V, H Kubo
    JOURNAL OF DIFFERENTIAL EQUATIONS 177 (1) 146 - 208 0022-0396 2001/11 [Refereed][Not invited]
     
    In this work we study weighted Sobolev spaces in R-n generated by the Lie algebra of vector fields (1 + \x \ (2))(1/2)partial derivative (x1), j = 1,..., n. Interpolation properties and Sobolev embeddings are obtained on the basis of a suitable localization in R-n. As an application we derive weighted Ll estimates for the solution of the homogeneous wave equation. For the inhomogeneous wave equation we generalize the weighted Strichartz estimate established by V. Georgiev (1997, Amer. J. Math. 119, 1291-1319) and establish global existence results for the supercritical semilinear wave equation with non-compact small initial data in these weighted Sobolev spaces. (C) 2001 Academic Press.
  • Asymptotic behavior of classical solutions to a system of semilinier wave equations in low space dimensions,
    H. Kubo, K. Kubota
    J. Math. Soc. Japan 53 875 - 912 2001 [Refereed][Not invited]
  • Supercritical semilinear wave equation with non-negative potential
    Comm. Partial Differential Equations 26, 2267-2303/, 2001 [Not refereed][Not invited]
  • H Kubo, M Ohta
    JOURNAL OF DIFFERENTIAL EQUATIONS 163 (2) 475 - 492 0022-0396 2000/05 [Refereed][Not invited]
     
    We consider the Cauchy problem for a system of semilinear wave equations with small initial data and critical nonlinearity. As for a class of systems of quasilinear wave equations with critical nonlinearity, the small data global existence has been well developed for the case when the propagation speeds are distinct. In contrast with the quasilinear case, we show that the critical small data blowup occurs for the semilinear case, even if the propagation speeds are different from each other. (C) 2000 Academic Press.
  • Weighted Strichartz estimate for the wave equation
    P D'Ancona, Georgiev, V, H Kubo
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE 330 (5) 349 - 354 0764-4442 2000/03 [Refereed][Not invited]
     
    In this work we study weighted Sobolev spaces in R-n generated by the Lie algebra of vector fields (1 + \x\(2))(1/2)partial derivative(xj), j = 1,..,n. Interpolation properties and Sobolev embeddings are obtained on the basis of a suitable localization in R-n. As an application we derive weighted L-q estimates for the solution of the homogeneous wave equation. For the inhomogeneous wave equation we generalize the weighted Strichartz estimate established in [6] and establish global existence result for the supercritical semilinear wave equation with non-compact small initial data in these weighted Sobolev spaces. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
  • Global small amplitude solutions of nonlinear hyperbolic systems with a critical exponent under the null condition
    A Hoshiga, H Kubo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS 31 (3) 486 - 513 0036-1410 2000/03 [Refereed][Not invited]
     
    This paper deals with the Cauchy problems of nonlinear hyperbolic systems in two space dimensions with small data. We assume that the propagation speeds differ from each other and that nonlinearities are cubic. Then it will be shown that if the nonlinearities satisfy the null condition, there exists a global smooth solution. To prove this kind of claim, one usually makes use of the generalized differential operators Omega(ij), S, and L-i, which will be introduced in section 1. But it is difficult to adopt the operators L-i = x(i)partial derivative(t) + t partial derivative x(i) to our problem, because they do not commute with the d'Alembertian whose propagation speed is not equal to one. We succeed in taking L-i away from the proof of our theorem. One can apply our method to a scalar equation; hence L-i are needless in this kind of argument.
  • Global existence and blow-up of the classical solutions to systems of semilinear wave equations in three space dimensions
    Hideo Kubo, Masahito Ohta
    Rend. Is-tit. Mat. Univ. Trieste 31 suppl. 2 145 - 168 2000 [Refereed][Not invited]
  • Critical exponent for wave equation with potential
    V. Georgiev, C. Kerller, Hideo Kubo
    Rend. Istit. Mat. Univ. Trieste 31 suppl. 2 103 - 127 2000 [Refereed][Not invited]
  • Weighted Strichartz esti-mate for the wave equation and low regularity solutions
    Piero D’Ancona, Vladimir Georgiev, Hideo Kubo
    Rend. Istit. Mat. Univ. Trieste 31 suppl. 2 51 - 61 2000 [Refereed][Not invited]
  • H Kubo, M Ohta
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 240 (2) 340 - 360 0022-247X 1999/12 [Refereed][Not invited]
     
    We consider the Cauchy problem for systems of semilinear wave equations in two and three space dimensions with small initial data. Del Santo ct al. ["Geometric Optics and Related Topics" (F. Colombini and N. Lerner, Eds.), Progress in Nonlinear Differential Equations and Their Applications, Vol. 32, pp. 117-140, Birkhauser, Boston, 1997] have studied the existence and nonexistence of global classical solutions of the Cauchy problem except for the critical case. In this paper we study the critical case, and we show the nonexistence of global classical solutions and also give the upper bounds of the life span. (C) 1999 Academic Press.
  • Chauchy problem of nonlinear wave equations with small and smooth initial data (Harmonic Analysis and Nonlinear Partial Differential Equations)
    Hideo Kubo
    数理解析研究所講究録 1102 91 - 111 1999/06 [Not refereed][Not invited]
  • Asymptotic behaviors of radially symmetric solutions of □u = |u|^p for super critical values p in even space dimensions
    Hideo Kubo, Koji Kubota
    Japanese J. Math., 24 (1998), 191–256. 24 191 - 256 1998 [Refereed][Not invited]
  • Slowly decaying solutions for semilinear wave equations in odd space dimensions
    H Kubo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 28 (2) 327 - 357 0362-546X 1997/01 [Refereed][Not invited]
  • Asymptotic behaviors of radially symmetric solutions of □u = |u|p for super critical values p in high dimensions(非線形発展方程式とその応用)
    H. Kubo, K. Kubota
    数理解析研究所講究録 966 88 - 94 1996 [Not refereed][Not invited]
  • Hideo Kubo
    Discrete and Continuous Dynamical Systems 2 (2) 173 - 190 1078-0947 1996 [Refereed][Not invited]
     
    In this paper we study global behaviors of solutions of initial value problem to wave equations with power nonlinearity. We shall derive space-time decay estimates according to decay rates of the initial data with low regularity (in classical sense). Indeed we can control L∞-norm of a solution in high dimension, provided the initial data are radially symmetric. This enables us to construct a global solution under suitable assumptions and to obtain an optimal estimate for a lifespan of a local solution.
  • Asymptotic behaviors of radial solutions to semilinear wave equations in odd space dimensions
    Hideo Kubo, K\\^oji Kubota
    Hokkaido Math.J. 1995 [Not refereed][Not invited]
  • Hideo Kubo, Kôji Kubota
    Hokkaido Mathematical Journal 24 (2) 287 - 336 0385-4035 1995 [Refereed][Not invited]
     
    We study asymptotic behaviors as t→±∞ of solutions to the nonlinear wave equation utt–Δ u=|u|p(p> 1) in x∈ ℝn, ∞< t< ∞ for p larger than a critical value p0(n) . These asymptotic behaviors guarantee the existence of the scattering operator. We prove the radially symmetric small solutions exist and are asymptotic to the solutions of the homogeneous wave equations, provided n is odd and n≥ 5. © 1995, Hokkaido University. All rights reserved.
  • ASYMPTOTIC-BEHAVIOR OF SOLUTIONS TO SEMILINEAR WAVE-EQUATIONS WITH INITIAL DATA OF SLOW DECAY
    H KUBO
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES 17 (12) 953 - 970 0170-4214 1994/09 [Refereed][Not invited]
     
    Some useful and remarkable property are derived from a representation formula of a radially symmetric solution to the Cauchy problem for a homogeneous wave equation in odd space dimensions. These properties provide us with enough information to consider the semilinear case, namely, the associated integral equation with the problem will be considered on a weighted L(infinity)-space. This formulation enables us to deal with the problem for slowly decaying initial data.
  • Blow-up for semilinear wave equations with initial data of slow decay in low space dimensions
    久保 英夫
    Differential and Integral Equations 7 315 - 321 1994 [Refereed][Not invited]

Books etc

  • RIMS Kôkyûroku Bessatsu B70 "Harmonic Analysis and Nonlinear Partial Differential Equations"
    Hideo Takaoka, Hideo Kubo (Joint editor)
    Research Institute for Mathematical Sciences Kyoto University 2018/04 166
  • RIMS Kôkyûroku Bessatsu B65 "Harmonic Analysis and Nonlinear Partial Differential Equations"
    Hideo Kubo, Hideo Takaoka 
    Research Institute for Mathematical Sciences Kyoto University 2017/05
  • RIMS Kôkyûroku Bessatsu B60 "Harmonic Analysis and Nonlinear Partial Differential Equations"
    Hideo Kubo, Mitsuru Sugimoto (Joint editor)
    Research Institute for Mathematical Sciences Kyoto University 2016/12 212
  • RIMS Kôkyûroku Bessatsu B56 "Harmonic Analysis and Nonlinear Partial Differential Equations"
    Hideo Kubo, Mitsuru Sugimoto (Joint editor)
    Research Institute for Mathematical Sciences Kyoto University 2016/04 215
  • RIMS Kôkyûroku Bessatsu B49 "Harmonic Analysis and Nonlinear Partial Differential Equations"
    Hideo Kubo, Mitsuru Sugimoto 
    Research Institute for Mathematical Sciences Kyoto University 2014/04 137
  • Hokkaido Math. J. vol.37
    Hideo Kubo, Hiroyuki Takamura (Joint editorSpecial Issue “Nonlinear Wave Equations”)
    Hokkaido University 2008
  • "New trends in the theory of hyperbolic equations", Oper. Theory Adv. Appl.
    Hideo Kubo, Masahito Ohta (ContributorOn the Global Behavior of Classical Solutions to Coupled Systems of Semilinear Wave Equations)
    BirkhäuserVerlag 2005 159, 113-211
  • Dispersive Nonlinear Problems in Mathematical Physics
    KUBO Hideo (ContributorOn point-wise decay estimates for the wave equation and their applications)
    2004 123-148

Conference Activities & Talks

  • Bio-inspired mathematical model of an effective integration of information  [Invited]
    KUBO Hideo
    第80回応用物理学会秋季学術講演会  2019/09  札幌市  公益社団法人 応用物理学会
  • Asymptotic behavior for the nonlinear damped wave equation with a positive potential  [Invited]
    KUBO Hideo
    信州大学偏微分方程式研究集会  2019/06  松本市  信州大学
  • ルールダイナミクスの適応性について  [Not invited]
    KUBO Hideo
    On the activation of adaptive filters by the self-organization  2019/05
  • Critical exponent for nonlinear damped wave equations with non-negative potential in 3D  [Not invited]
    KUBO Hideo
    偏微分方程式セミナー  2019/04  北海道大学  北海道大学
  • 波動方程式に対する重み付きエネルギー評価とその周辺  [Not invited]
    久保 英夫
    感応寺山セミナー2019  2019/01
  • On the metric perturbation for semilinear wave equations  [Invited]
    KUBO Hideo
    SEMINARIO DI EQUAZIONI ALLE DERIVATE PARZIALI  2018/12  Pisa  Università di Pisa
  • Global existence for nonlinear damped wave equations with a potential  [Invited]
    KUBO Hideo
    第14回非線型の諸問題  2018/09
  • Remark on Kolmogorov's superposition theorem  [Not invited]
    KUBO Hideo
    RIMS共同研究「Mathematical Analysis of Self-Organization with Constraints」  2018/05
  • Global existence for nonlinear damped wave equations with potential  [Invited]
    KUBO Hideo
    Zhejiang-Hokudai Workshop  2018/03
  • On the exterior problem for systems of nonlinear wave equations with multiple speeds  [Not invited]
    KUBO Hideo
    Workshop on Nonlinear Wave Equations  2017/04  Fudan University
  • Asymptotic behavior of solutions to quasilinear wave equations with dissipative structure  [Not invited]
    KUBO Hideo
    7th Euro-Japanese Workshop on Blow-up  2016/09  Będlewo  The Mathematical Research and Conference Center
  • On the local smoothing for the Dirac equation  [Not invited]
    KUBO Hideo
    10th International ISAAC Congress  2015/08  University of Macau
  • On the exterior problem for the wave equation with critical nonlinearity in 2D  [Not invited]
    KUBO Hideo
    Analysis of Relativistic and Non-Relativistic models in Quantum Mechanics  2014/04  University of Roma
  • On the null condition for nonlinear massless Dirac Equations in 3D  [Not invited]
    KUBO Hideo
    Fourier Analysis and Pseudo-Differential Operators  2012/06  Aalto University
  • Generalized wave operator for a system of nonlinear wave equations  [Not invited]
    KUBO Hideo
    7th International ISAAC Congress  2009/07  Imperial College London
  • Lifespan for nonlinear wave equations in an exterior domain  [Not invited]
    KUBO Hideo
    SEMINARIE, Analyse numeric et E.D.P.  2009/03  Universite Paris-Sud
  • Large time behavior of solutions to semilinear wave equations with dispersive structure  [Not invited]
    KUBO Hideo
    FRG/JAMI workshop “Nonlinear Dispersive Equations"  2007/03  Johns Hopkins University
  • Global and almost global existence for wave equations on unbounded domains  [Not invited]
    KUBO Hideo
    6'eme Conf'erence Internationale AIMS, “Systemes Dynamiques, Equations Differentielles et Applications"  2006/06  Universite de Poitiers
  • 非線形波動方程式に対する散乱作用素の一つの構成法  [Not invited]
    久保 英夫
    ENCOUNTER with MATHEMATICS “第31回スペクトル・散乱理論"  2004/10  中央大学
  • 波動方程式の解の時空評価と非線型摂動への応用  [Not invited]
    久保 英夫
    日本数学会函数方程式論特別講演  2003/09  千葉大学
  • On the small data global existence and scattering for systems of semilinear wave equations  [Not invited]
    KUBO Hideo
    Hyperbolic Problems and Related Topics  2002/09  Cortona
  • Global existence to nonlinear wave equations with a potential in three dimensions  [Not invited]
    KUBO Hideo
    微分方程式の総合的研究  2000/12  東京大学
  • Global small amplitude solutions of nonlinear hyperbolic systems with a critical exponent under the null condition  [Not invited]
    KUBO Hideo
    微分方程式の総合的研究  1997/12  大阪大学

Works

  • 長距離型の非線型波動方程式系の大域解の漸近挙動に関する研究
    2005
  • 摂動型波動方程式に対する重みつき時空評価に関する研究
    2004

MISC

  • A remark on long range effect for a system of semilinear wave equation
    Hideo Kubo, Motoharu Takaki  Rendiconti dell'Istituto di Matematica dell'Universita di Trieste  2010  [Not refereed][Not invited]
  • Soichiro Katayama, Hideo Kubo  Funkcialaj Ekvacioj  53-  (3)  331  -358  2010  [Not refereed][Not invited]
     
    In this paper we consider the mixed problem for the wave equation exterior to a non trapping obstacle in odd space dimensions. We derive a rate of the convergence of the solution for the mixed problem to its asymptotic profile, which is written as a solution for the Cauchy problem. As a by-product, we are able to find out the radiation field of solutions to the mixed problem in terms of the scattering data.
  • On the large time behavior of solutions to semilinear system of the wave equation
    Soichiro Katayama, Hideo Kubo  Proceedings of the 5th International ISSAC congress  2009  [Not refereed][Not invited]
  • Soichiro Katayama, Hideo Kubo  J. Math. Soc. Japan  2008  [Not refereed][Not invited]
  • Soichiro Katayama, Hideo Kubo  SIAM J. Math. Anal.  39-  (6)  1851  -1862  2008  [Not refereed][Not invited]
  • Soichiro Katayama, Hideo Kubo  Indiana Univ. Math. J.  2008  [Not refereed][Not invited]
  • Soichiro Katayama, Hideo Kubo  J. Math. Soc. Japan  2008  [Not refereed][Not invited]
  • Super critical semilinear wave equation with non-negative potential
    Vladimir Georgiev, Charlotte Heiming, Hideo Kubo  Comm. PDE  2001  [Not refereed][Not invited]
  • Super critical semilinear wave equation with non-negative potential
    Vladimir Georgiev, Charlotte Heiming, Hideo Kubo  Comm. PDE  2001  [Not refereed][Not invited]
  • Small data blowup for systems of semilinear wave equations with different propagation speeds in three space dimensions (vol 163, pg 475, 2000)
    H Kubo, M Ohta  JOURNAL OF DIFFERENTIAL EQUATIONS  168-  (2)  477  -477  2000/12  [Not refereed][Not invited]
  • Asymptotic behaviors of radial solutions to semilinear wave equations in odd space dimensions
    Hideo Kubo, K\\^oji Kubota  Hokkaido Math.J.  1995  [Not refereed][Not invited]

Awards & Honors

  • 2002 日本数学会賞建部賢弘 特別賞

Research Grants & Projects

  • 波動方程式の解の漸近挙動の解析
    その他の研究制度
    Date (from‐to) : 2008 -2008
  • 非線型波動方程式に関する研究
    Date (from‐to) : 1996

Educational Activities

Teaching Experience

  • Special lecture on Analytic studies
    開講年度 : 2018
    課程区分 : 修士課程
    開講学部 : 理学院
    キーワード : Metric, Partial differential equations
  • Inter-Graduate School Classes(General Subject):Natural and Applied Sciences
    開講年度 : 2018
    課程区分 : 修士課程
    開講学部 : 大学院共通科目
  • Introductory Linear Algebra
    開講年度 : 2018
    課程区分 : 学士課程
    開講学部 : 全学教育
    キーワード : 連立1次方程式, 逆行列, 固有値, 固有ベクトル
  • Introductory Calculus
    開講年度 : 2018
    課程区分 : 学士課程
    開講学部 : 全学教育
    キーワード : 極限,1変数関数,微分,積分

Committee Membership

  • 2009 -2010   日本数学会   東北支部 代議員   日本数学会
  • 2008 -2009   日本数学会   東北支部 連絡責任評議員   日本数学会
  • 2008 -2009   日本数学会   「数学通信」編集委員   日本数学会


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.