Researcher Database

Researcher Profile and Settings

Master

Affiliation (Master)

  • Faculty of Engineering Applied Quantum Science and Engineering Quantum Engineering for Life Science and Medicine

Affiliation (Master)

  • Faculty of Engineering Applied Quantum Science and Engineering Quantum Engineering for Life Science and Medicine

researchmap

Profile and Settings

Profile and Settings

  • Name (Japanese)

    Miyamoto
  • Name (Kana)

    Naoki
  • Name

    201301040480007231

Alternate Names

Achievement

Research Interests

  • medical physics   放射線治療   Image Guided Radiation Therapy   4D Radiation Therapy   

Research Areas

  • Life sciences / Medical and welfare engineering
  • Life sciences / Radiology

Research Experience

  • 2018/06 - Today Hokkaido University Faculty of Engineering
  • 2014/04 - 2018/05 Hokkaido University Hospital Department of Radiation Medicine Assistant Professor
  • 2008/04 - 2013/03 Graduate School of Medicine Department of Medical Physics Assistant Professor
  • 2006/04 - 2008/03 Graduate School of Engineering Quantum Beam System Engineering Postdoctoral Fellow

Education

  • 2003/04 - 2006/03  Hokkaido University
  • 2001/04 - 2003/03  Hokkaido University  Graduate School of Engineering  Department of Quantum Energy Engineering
  • 1997/04 - 2001/03  Hokkaido University  Faculty of Engineering  Nuclear Engineering

Awards

  • 2021/09 Japan Society of Medical Physics, Korean Society of Medical Physics Best Poster Award, The 9th Korea-Japan Joint Meeting on Medical Physics
     Prediction of internal markers’ position with deep learning in real-time tumor-tracking radiotherapy 
    受賞者: Yuta Aoyama;Seishin Takao;Koichi Miyazaki;Kohei Yokokawa;Taeko Matsuura;Hiroshi Taguchi;Norio Katoh;Hidefumi Aoyama;Kikuo Umegaki;Naoki Miyamoto
  • 2021/09 Japan Society of Medical Physics, Korean Society of Medical Physics Best Poster Award, The 9th Korea-Japan Joint Meeting on Medical Physics
     Data augmentation of 4DCT dataset based on principal component analysis of deformation vector field 
    受賞者: Suzuka Asano;Seishin Takao;Koichi Miyazaki;Kohei Yokokawa;Taeko Matsuura;Hiroshi Taguchi;Norio Katoh;Hidefumi Aoyama;Kikuo Umegaki;Naoki Miyamoto
  • 2019/09 日本癌学会 第9回 JCA-CHAAO賞
     動体追跡技術と同期照射技術を用いた高精度放射線治療の開発と臨床研究 
    受賞者: 白土 博樹;清水 伸一;鬼丸 力也;品川 尚文;阿保 大介;加藤 徳雄;梅垣 菊男;石川 正純;宮本 直樹;青山 英史
  • 2017/04 公益社団法人 発明協会 恩賜発明賞
     動体追跡粒子線がん治療装置の発明 
    受賞者: 藤井祐介;梅川徹;梅澤真澄;白土博樹;梅垣菊男;宮本直樹;松浦妙子
  • 2012/09 医学物理学会 Outstanding Research Award
     Real-time tumor-tracking system with single fluoroscopic imaging 
    受賞者: Naoki Miyamoto;Masayori Ishikawa;Kenneth Sutherland;Ryusuke Suzuki;Taeko Matsuura;Chie Toramatsu;Seishin Tako;Hideaki Nihongi;Shinichi Shimizu;Kikuo Umegaki;Hiroki Shirato
  • 2011/10 Japanese Society of Medical Physics Outstanding Poster Award
     Respiratory motion of lung tumor determined by trajectory data of multiple fiducial markers in real-time tumor-tracking radiotherapy 
    受賞者: Naoki Miyamoto;Kanako Otomo;Kenneth Sutherland;Ryusuke Suzuki;Taeko Matsuura;Chie Toramatsu;Seishin Tako;Hideaki Nihongi;Rumiko Kinoshita;Shinichi Shimizu;Rikiya Onimaru;Masayori Ishikawa;Kikuo Umegaki;Hiroki Shirato
  • 2007/10 Japanese Society for Non-Destructive Inspection Young Scientists Award
     Non-destructive analysis of nuclide distribution by neutron resonance absorption CT utilizing a small pulsed neutron source 
    受賞者: Naoki Miyamoto;Tamotsu Kozaki;Satoshi Tomioka;Takashi Kamiyama

Published Papers

  • Yuhei Kikkawa, Hideaki Ueda, Yusuke Uchinami, Norio Katoh, Hidefumi Aoyama, Yoichi M Ito, Kohei Yokokawa, Ye Chen, Taeko Matsuura, Naoki Miyamoto, Seishin Takao
    Journal of radiation research 2024/10/08 
    To assess the interfractional anatomical range variations (ARVs) with beam directions and their impact on dose distribution in intensity modulated proton therapy, we analyzed water equivalent thickness (WET) from 10 patients with pancreatic cancer. The distributions of the interfractional WET difference ($\Delta{\mathrm{WET } }^{\theta }$) across 360° were visualized using polar histograms. Interfractional ARVs were evaluated using the mean absolute error and ΔWET pass rate, indicating the percentage of $\Delta \mathrm{WE},{\mathrm{T } }^{\theta }$ < thresholds. The impact on dose distribution in proton therapy was evaluated based on two treatment plans for 40 Gy(RBE)/5 fractions: 'Plan A', using two beam angles, in which the target was closest to the body surface among four perpendicular directions; and 'Plan B', using two beam angles with small ARVs. Analysis revealed individual variations in angular trends of interfractional ARVs. Three distinct trends were identified: Group 1 exhibited small ARVs around posterior directions; Group 2 exhibited small ARVs except ~60°; Group 3 demonstrated minimal ARVs only ~90°. In dose evaluation, while 150° and 210° were selected in Plan B for 9 out of 10 patients, for the remaining patient, 60° and 90° were chosen. Comparing dose volume histogram parameters for all patients, Plan B significantly reduced target coverage loss while maintaining organ-at-risk sparing comparable to Plan A. These results demonstrated that selecting beam angles with small interfractional ARVs for each patient enhances the robustness of dose distribution, reducing target coverage loss.
  • Kazuki Numakura, Seishin Takao, Taeko Matsuura, Kouhei Yokokawa, Ye Chen, Yusuke Uchinami, Hiroshi Taguchi, Norio Katoh, Hidefumi Aoyama, Satoshi Tomioka, Naoki Miyamoto
    Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) 125 104507 - 104507 2024/09 
    PURPOSE: To demonstrate the possibility of using a lower imaging rate while maintaining acceptable accuracy by applying motion prediction to minimize the imaging dose in real-time image-guided radiation therapy. METHODS: Time-series of three-dimensional internal marker positions obtained from 98 patients in liver stereotactic body radiation therapy were used to train and test the long-short-term memory (LSTM) network. For real-time imaging, the root mean squared error (RMSE) of the prediction on three-dimensional marker position made by LSTM, the residual motion of the target under respiratory-gated irradiation, and irradiation efficiency were evaluated. In the evaluation of the residual motion, the system-specific latency was assumed to be 100 ms. RESULTS: Except for outliers in the superior-inferior (SI) direction, the median/maximum values of the RMSE for imaging rates of 7.5, 5.0, and 2.5 frames per second (fps) were 0.8/1.3, 0.9/1.6, and 1.2/2.4 mm, respectively. The median/maximum residual motion in the SI direction at an imaging rate of 15.0 fps without prediction of the marker position, which is a typical clinical setting, was 2.3/3.6 mm. For rates of 7.5, 5.0, and 2.5 fps with prediction, the corresponding values were 2.0/2.6, 2.2/3.3, and 2.4/3.9 mm, respectively. There was no significant difference between the irradiation efficiency with and that without prediction of the marker position. The geometrical accuracy at lower frame rates with prediction applied was superior or comparable to that at 15 fps without prediction. In comparison with the current clinical setting for real-time image-guided radiation therapy, which uses an imaging rate of 15.0 fps without prediction, it may be possible to reduce the imaging dose by half or more. CONCLUSIONS: Motion prediction can effectively lower the frame rate and minimize the imaging dose in real-time image-guided radiation therapy.
  • Naoki Miyamoto, Norio Katoh, Takahiro Kanehira, Kohei Yokokawa, Ryusuke Suzuki, Yusuke Uchinami, Hiroshi Taguchi, Daisuke Abo, Hidefumi Aoyama
    Physics and imaging in radiation oncology 31 100623 - 100623 2024/07 
    Real-time tumor-tracking volumetric modulated arc therapy (RT-VMAT) enabling beam-gating based on continuous X-ray tracking of the three-dimensional position of internal markers is relevant for moving tumors. Dose-volume characteristics and treatment time were evaluated in ten consecutive patients who underwent liver stereotactic body radiation therapy with RT-VMAT. Target dose conformity and sparing of the stomach and the intestine were improved comparing RT-VMAT with RT-3D conformal radiotherapy. The mean treatment time for each fraction was less than 10 min. RT-VMAT could be effective, especially for targets located adjacent to organs at risk.
  • Hamada T, Sutherland K, Ishikawa M, Saito J, Miyamoto N, Honma S, Shirato H, Honma K-I ( * Correspondence)
    Biochemical and Biophysical Research Communications 2024/07 [Refereed][Not invited]
  • Yuki Saito, Ryusuke Suzuki, Naoki Miyamoto, Kenneth Lee Sutherland, Takahiro Kanehira, Masaya Tamura, Takashi Mori, Kentaro Nishioka, Takayuki Hashimoto, Hidefumi Aoyama
    Journal of Applied Clinical Medical Physics 2024/04 [Refereed][Not invited]
  • Yusuke Uchinami, Koichi Yasuda, Hideki Minatogawa, Yasuhiro Dekura, Noboru Nishikawa, Rumiko Kinoshita, Kentaro Nishioka, Norio Katoh, Takashi Mori, Manami Otsuka, Naoki Miyamoto, Ryusuke Suzuki, Keiji Kobashi, Yasushi Shimizu, Jun Taguchi, Nayuta Tsushima, Satoshi Kano, Akihiro Homma, Hidefumi Aoyama
    Radiation oncology journal 42 (1) 74 - 82 2024/03 [Refereed]
     
    PURPOSE: To investigate the clinical significance of adaptive radiotherapy (ART) in locally advanced nasopharyngeal carcinoma treated with intensity-modulated radiotherapy (IMRT). MATERIALS AND METHODS: Eligible patients were treated with concurrent chemoradiotherapy using IMRT. Planning computed tomography in ART was performed during radiotherapy, and replanning was performed. Since ART was started in May 2011 (ART group), patients who were treated without ART up to April 2011 (non-ART group) were used as the historical control. The Kaplan-Meier method was used to calculate overall survival (OS), locoregional recurrence-free survival (LRFS), progression-free survival (PFS), and distant metastasis-free survival (DMFS). LRFS for the primary tumor (LRFS_P) and regional lymph node (LRFS_LN) were also studied for more detailed analysis. Statistical significance was evaluated using the log-rank test for survival. RESULTS: The ART group tended to have higher radiation doses. The median follow-up period was 127 months (range, 10 to 211 months) in the non-ART group and 61.5 months (range, 5 to 129 months) in the ART group. Compared to the non-ART group, the ART group showed significantly higher 5-year PFS (53.8% vs. 81.3%, p = 0.015) and LRFS (61.2% vs. 85.3%, p = 0.024), but not OS (80.7% vs. 80.8%, p = 0.941) and DMFS (84.6% vs. 92.7%, p = 0.255). Five-year LRFS_P was higher in the ART group (61.3% vs. 90.6%, p = 0.005), but LRFS_LN did not show a significant difference (91.9% vs. 96.2%, p = 0.541). CONCLUSION: Although there were differences in the patient backgrounds between the two groups, this study suggests the potential effectiveness of ART in improving locoregional control, especially in the primary tumor.
  • Shota Sueyasu, Koki Kasamatsu, Taisuke Takayanagi, Ye Chen, Yasutoshi Kuriyama, Yoshihiro Ishi, Tomonori Uesugi, Wolfgang Rohringer, Mehmet Burcin Unlu, Nobuki Kudo, Kohei Yokokawa, Seishin Takao, Naoki Miyamoto, Taeko Matsuura
    Medical physics 2023/12/21 [Refereed]
     
    BACKGROUND: Ionoacoustics is a promising approach to reduce the range uncertainty in proton therapy. A miniature-sized optical hydrophone (OH) was used as a measuring device to detect weak ionoacoustic signals with a high signal-to-noise ratio in water. However, further development is necessary to prevent wave distortion because of nearby acoustic impedance discontinuities while detection is conducted on the patient's skin. PURPOSE: A prototype of the probe head attached to an OH was fabricated and the required dimensions were experimentally investigated using a 100-MeV proton beam from a fixed-field alternating gradient accelerator and k-Wave simulations. The beam range of the proton in a tissue-mimicking phantom was estimated by measuring γ-waves and spherical ionoacoustic waves with resonant frequency (SPIRE). METHODS: Four sizes of probe heads were fabricated from agar blocks for the OH. Using the prototype, the γ-wave was detected at distal and lateral positions to the Bragg peak on the phantom surface for proton beams delivered at seven positions. For SPIRE, independent measurements were performed at distal on- and off-axis positions. The range positions were estimated by solving the linear equation using the sensitive matrix for the γ-wave and linear fitting of the correlation curve for SPIRE; they were compared with those measured using a film. RESULTS: The first peak of the γ-wave was undistorted with the 3 × 3 × 3-cm3 probe head used at the on-axis and 3-cm off-axis positions. The range positions estimated by the γ-wave agreed with the film-based range in the depth direction (the maximum deviation was 0.7 mm), although a 0.6-2.1 mm deviation was observed in the lateral direction. For SPIRE, the deviation was <1 mm for the two measurement positions. CONCLUSIONS: The attachment of a relatively small-sized probe head allowed the OH to measure the beam range on the phantom surface.
  • Yusuke Uchinami, Naoki Miyamoto, Daisuke Abo, Ryo Morita, Koji Ogawa, Tatsuhiko Kakisaka, Ryusuke Suzuki, Tomohiko Miyazaki, Hiroshi Taguchi, Norio Katoh, Hidefumi Aoyama
    Journal of radiation research 2023/11/22 [Refereed]
     
    The SyncTraX series enables real-time tumor-tracking radiotherapy through the real-time recognition of a fiducial marker using fluoroscopic images. In this system, the isocenter should be located within approximately 5-7.5 cm from the marker, depending on the version, owing to the limited field of view. If the marker is placed away from the tumor, the isocenter should be shifted toward the marker. This study aimed to investigate stereotactic body radiotherapy (SBRT) outcomes of primary liver tumors treated with SyncTraX in cases where the isocenter was shifted marginally or outside the planning target volume (PTV). Twelve patients with 13 liver tumors were included in the analysis. Their isocenter was shifted toward the marker and was placed marginally or outside the PTV. The prescribed doses were generally 40 Gy in four fractions or 48 Gy in eight fractions. The overall survival (OS) and local control (LC) rates were calculated using the Kaplan-Meier method. All patients completed the scheduled SBRT. The median distance between the fiducial marker and PTV centroid was 56.0 (interquartile range [IQR]: 52.7-66.7) mm. By shifting the isocenter toward the marker, the median distance between the marker and isocenter decreased to 34.0 (IQR: 33.4-39.7) mm. With a median follow-up period of 25.3 (range: 6.9-70.0) months, the 2-year OS and LC rates were 100.0% (95% confidence interval: 100-100). An isocenter shift makes SBRT with SyncTraX feasible in cases where the fiducial marker is distant from the tumor.
  • Satoshi Tomioka, Naoki Miyamoto, Yuji Yamauchi, Yutaka Matsumoto, Samia Heshmat
    Applied Optics 2023/10/10 [Refereed]
  • Yusuke Uchinami, Takahiro Kanehira, Keiji Nakazato, Yoshihiro Fujita, Fuki Koizumi, Shuhei Takahashi, Manami Otsuka, Koichi Yasuda, Hiroshi Taguchi, Kentaro Nishioka, Naoki Miyamoto, Kohei Yokokawa, Ryusuke Suzuki, Keiji Kobashi, Keita Takahashi, Norio Katoh, Hidefumi Aoyama
    BJR|Open 5 (1) 2023/08 [Refereed]
     
    Objectives: We aimed to investigate whether daily computed tomography (CT) images could predict the daily gastroduodenal, small intestine, and large intestine doses of stereotactic body radiation therapy (SBRT) for pancreatic cancer based on the shortest distance between the gross tumor volume (GTV) and gastrointestinal (GI) tract. Methods: Twelve patients with pancreatic cancer received SBRT of 40 Gy in five fractions. We recalculated the reference clinical SBRT plan (PLANref) using daily CT images and calculated the shortest distance from the GTV to each GI tract. The maximum dose delivered to 0.5 cc (D0.5cc) was evaluated for each planning at-risk volume of the GI tract. Spearman’s correlation test was used to determine the association between the daily change in the shortest distance (Δshortest distance) and the ratio of ΔD0.5cc dose to D0.5cc dose in PLANref (ΔD0.5cc/PLANref) for quantitative analysis. Results: The median shortest distance in PLANref was 0 mm in the gastroduodenum (interquartile range, 0–2.7), 16.7 mm in the small intestine (10.0–23.7), and 16.7 mm in the large intestine (8.3–28.1 mm). The D0.5cc of PLANref in the gastroduodenum was >30 Gy in all patients, with 10 (83.3%) having the highest dose. A significant association was found between the Δshortest distance and ΔD0.5cc/ PLANref in the small or large intestine (p < 0.001) but not in the gastroduodenum (p = 0.404). Conclusions: The gastroduodenum had a higher D0.5cc and predicting the daily dose was difficult. Daily dose calculations of the GI tract are recommended for safe SBRT. Advances in knowledge: This study aimed to predict the daily doses in SBRT for pancreatic cancer from the shortest distance between the GTV and the gastrointestinal tract. Daily changes in the shortest distance can predict the daily dose to the small or large intestines, but not to the gastroduodenum.
  • Yusuke Uchinami, Takahiro Kanehira, Yoshihiro Fujita, Naoki Miyamoto, Kohei Yokokawa, Fuki Koizumi, Motoyasu Shido, Shuhei Takahashi, Manami Otsuka, Koichi Yasuda, Hiroshi Taguchi, Keiji Nakazato, Keiji Kobashi, Norio Katoh, Hidefumi Aoyama
    Clinical and Translational Radiation Oncology 39 100576 - 100576 2405-6308 2023/03 [Refereed]
  • Yusuke Uchinami, Norio Katoh, Daisuke Abo, Ryo Morita, Hiroshi Taguchi, Yoshihiro Fujita, Takahiro Kanehira, Ryusuke Suzuki, Naoki Miyamoto, Seishin Takao, Taeko Matsuura, Takuya Sho, Koji Ogawa, Tatsuya Orimo, Tatsuhiko Kakisaka, Keiji Kobashi, Hidefumi Aoyama
    The British journal of radiology 96 (1144) 20220720 - 20220720 2023/01/12 [Refereed]
     
    OBJECTIVES: In a previous study of hepatic toxicity, the following three factors were identified to predict the benefits of proton beam therapy (PBT) for hepatocellular carcinomas (HCC) with a maximum diameter of ≤5 cm and Child-pugh grade A (CP-A): number of tumors (one vs ≥2), the location of tumors (hepatic hilum or others), and the sum of the diameters of lesions. The aim of this study is to analyze the association between these three factors and hepatic toxicity. METHODS: We retrospectively reviewed patients of CP-A treated with PBT or photon stereotactic body radiotherapy (X-ray radiotherapy, XRT) for HCC ≤5 cm. For normal liver dose, the V5, V10, V20 (volumes receiving 5, 10, and 20 Gy at least), and the mean dose was evaluated. The albumin-bilirubin (ALBI) and CP score changes from the baseline were evaluated at 3 and 6 months after treatment. RESULTS: In 89 patients (XRT: 48, PBT: 41), those with two or three (2-3) predictive factors were higher normal liver doses than with zero or one (0-1) factor. In the PBT group, the ALBI score worsened more in patients with 2-3 factors than those with 0-1 factor, at 3 months (median 0.26 vs 0.02, p = 0.032) and at 6 months (median: 0.35 vs 0.10, p = 0.009). The ALBI score change in the XRT group and CP score change in either modality were not significantly different in the number of predictive factors. CONCLUSIONS: The predictive factor numbers predicted the ALBI score change in PBT but not in XRT. ADVANCES IN KNOWLEDGE: This study suggest that the number of predictive factors previously identified (0-1 vs 2-3) were significantly associated with dosimetric parameters of the normal liver in both modalities. In the proton group, the number of predictive factors was associated with a worsening ALBI score at 3 and 6 months, but these associations were not found in the photon SBRT group.
  • Koichi Miyazaki, Yusuke Fujii, Takahiro Yamada, Takahiro Kanehira, Naoki Miyamoto, Taeko Matsuura, Koichi Yasuda, Yusuke Uchinami, Manami Otsuka, Hidefumi Aoyama, Seishin Takao
    Medical physics 50 (2) 675 - 687 2022/12/11 [Refereed]
     
    BACKGROUND: Online adaptation during intensity-modulated proton therapy (IMPT) can minimize the effect of inter-fractional anatomical changes, but remains challenging because of the complex workflow. One approach for fast and automated online IMPT adaptation is dose restoration, which restores the initial dose distribution on the updated anatomy. However, this method may fail in cases where tumor deformation or position changes occur. PURPOSE: To develop a fast and robust IMPT online adaptation method named "deformed dose restoration (DDR)" that can adjust for inter-fractional tumor deformation and position changes. METHODS: THE DDR METHOD COMPRISES TWO STEPS: : (1) calculation of the deformed dose distribution, and (2) restoration of the deformed dose distribution. First, the deformable image registration (DIR) between the initial clinical target volume (CTV) and the new CTV were performed to calculate the vector field. To ensure robustness for setup and range uncertainty and the ability to restore the deformed dose distribution, an expanded CTV-based registration to maintain the dose gradient outside the CTV was developed. The deformed dose distribution was obtained by applying the vector field to the initial dose distribution. Then, the voxel-by-voxel dose difference optimization was performed to calculate beam parameters that restore the deformed dose distribution on the updated anatomy. The optimization function was the sum of total dose differences and dose differences of each field to restore the initial dose overlap of each field. This method only requires target contouring, which eliminates the need for organs at risk (OARs) contouring. Six clinical cases wherein the tumor deformation and/or position changed on repeated CTs were selected. DDR feasibility was evaluated by comparing the results with those from three other strategies, namely, not adapted (continuing the initial plan), adapted by previous dose restoration, and fully optimized. RESULTS: In all cases, continuing the initial plan was largely distorted on the repeated CTs and the dose-volume histogram (DVH) metrics for the target were reduced due to the tumor deformation or position changes. On the other hand, DDR improved DVH metrics for the target to the same level as the initial dose distribution. Dose increase was seen for some OARs because tumor growth had reduced the relative distance between CTVs and OARs. Robustness evaluation for setup and range uncertainty (3 mm/3.5%) showed that deviation in DVH-bandwidth for CTV D95% from the initial plan was 0.4 ± 0.5% (Mean ± S.D.) for DDR. The calculation time was 8.1 ± 6.4 min. CONCLUSIONS: An online adaptation algorithm was developed that improved the treatment quality for inter-fractional anatomical changes and retained robustness for intra-fractional setup and range uncertainty. The main advantage of this method is that it only requires target contouring alone and saves the time for OARs contouring. The fast and robust adaptation method for tumor deformation and position changes described here can reduce the need for offline adaptation and improve treatment efficiency. This article is protected by copyright. All rights reserved.
  • Suzuka Asano, Keishi Oseki, Seishin Takao, Koichi Miyazaki, Kohei Yokokawa, Taeko Matsuura, Hiroshi Taguchi, Norio Katoh, Hidefumi Aoyama, Kikuo Umegaki, Naoki Miyamoto
    Medical Physics 0094-2405 2022/12/03 [Refereed]
  • Manami Otsuka, Koichi Yasuda, Yusuke Uchinami, Nayuta Tsushima, Takayoshi Suzuki, Satoshi Kano, Ryusuke Suzuki, Naoki Miyamoto, Hideki Minatogawa, Yasuhiro Dekura, Takashi Mori, Kentaro Nishioka, Jun Taguchi, Yasushi Shimizu, Norio Katoh, Akihiro Homma, Hidefumi Aoyama
    Journal of medical imaging and radiation oncology 67 (1) 98 - 110 2022/11/14 [Refereed]
     
    INTRODUCTION: Sequential boost intensity-modulated radiotherapy (SQB-IMRT) uses two different planning CTs (pCTs) and treatment plans. SQB-IMRT is a form of adaptive radiotherapy that allows for responses to changes in the shape of the tumour and organs at risk (OAR). On the other hand, dose accumulation with the two plans can be difficult to evaluate. The purpose of this study was to analyse patterns of loco-regional failure using deformable image registration (DIR) in hypopharyngeal cancer patients treated with SQB-IMRT. METHODS: Between 2013 and 2019, 102 patients with hypopharyngeal cancer were treated with definitive SQB-IMRT at our institution. Dose accumulation with the 1st and 2nd plans was performed, and the dose to the loco-regional recurrent tumour volume was calculated using the DIR workflow. Failure was classified as follows: (i) in-field (≥95% of the recurrent tumour volume received 95% of the prescribed dose); (ii) marginal (20-95%); or (iii) out-of-field (<20%). RESULTS: After a median follow-up period of 25 months, loco-regional failure occurred in 34 patients. Dose-volume histogram analysis showed that all loco-regional failures occurred in the field within 95% of the prescribed dose, with no marginal or out-of-field recurrences observed. CONCLUSION: The dosimetric analysis using DIR showed that all loco-regional failures were within the high-dose region. More aggressive treatment may be required for gross tumours.
  • Haoran Liu, Naoki Miyamoto, Mai Thanh Nguyen, Hiroki Shirato, Tetsu Yonezawa
    ACS Applied Bio Materials 2022/09/08 [Refereed]
  • Hideo Takakura, Shino Matsuhiro, Osamu Inanami, Masato Kobayashi, Kenichiro Saita, Masaki Yamashita, Kohei Nakajima, Motofumi Suzuki, Naoki Miyamoto, Tetsuya Taketsugu, Mikako Ogawa
    Organic & biomolecular chemistry 2022/08/16 [Refereed]
     
    Ligand release from silicon phthalocyanine (SiPc) dyes triggered by near-infrared (NIR) light is a key photochemical reaction involving caged compounds based on SiPc. Although NIR light is relatively permeable compared with visible light, this light can be attenuated by tissue absorption and scattering; therefore, using light to induce photochemical reactions deep inside the body is difficult. Herein, because X-rays are highly permeable and can produce radicals through the radiolysis of water, we investigated whether the axial ligands of SiPcs can be cleaved using X-ray irradiation. SiPcs with different axial ligands (alkoxy, siloxy, oxycarbonyl, and phenoxy groups) were irradiated with X-rays under hypoxic conditions. We found that the axial ligands were cleaved via reactions with hydrated electrons (e-aq), not OH radicals, generated from water in response to X-ray irradiation, and SiPc with alkoxy groups exhibited the highest cleavage efficiency. A quantitative investigation revealed that X-ray-induced axial ligand cleavage proceeds via a radical chain reaction. The reaction is expected to be applicable to the molecular design of X-ray-activatable functional molecules in the future.
  • Yusuke Uchinami, Norio Katoh, Ryusuke Suzuki, Takahiro Kanehira, Masaya Tamura, Seishin Takao, Taeko Matsuura, Naoki Miyamoto, Yoshihiro Fujita, Fuki Koizumi, Hiroshi Taguchi, Koichi Yasuda, Kentaro Nishioka, Isao Yokota, Keiji Kobashi, Hidefumi Aoyama
    Clinical and Translational Radiation Oncology 35 70 - 75 2405-6308 2022/07 [Refereed]
  • Kai Ikeda, Haoran Liu, Naoki Miyamoto, Mai Thanh Nguyen, Hiroki Shirato, Tetsu Yonezawa
    ACS applied bio materials 5 (3) 1259 - 1266 2022/03/21 [Refereed]
     
    Image-guided radiation therapy (IGRT) has emerged as a promising technique for cancer treatment to improve radiation precision and accuracy, thereby reducing the treatment toxicity and optimizing therapeutic efficacy. In IGRT, fiducial markers are required to be inserted near the tumor to get the spatial information of the tumor. Currently used metal fiducial markers with large sizes would be highly invasive; therefore, it is critical to develop minimally invasive alternatives to these markers. In this work, an injectable marker based on Biopex-supported Au NPs with adequate radio-opacity for X-ray visualization was developed. Biopex can function as a substrate for the growth of Au NPs and avoid excessive reaction-induced aggregation and precipitation. The self-curing property of Biopex prevents the leakage and elimination of isolated Au NPs, enabling long-term X-ray observation and radiotherapy. The effect of Biopex amount, gold precursor concentration, and reaction time were evaluated. The visibility of samples prepared by the optimized formula was also examined. The developed Biopex-Au NPs could be injected through a 21 G needle and exhibit great visibility in the X-ray visualization test, showing great potential as a fiducial marker for image-guided radiation therapy.
  • Haoran Liu, Naoki Miyamoto, Mai Thanh Nguyen, Hiroki Shirato, Tetsu Yonezawa
    Materials Advances 2022 [Refereed]
  • Koki Kasamatsu, Sodai Tanaka, Koichi Miyazaki, Seishin Takao, Naoki Miyamoto, Shusuke Hirayama, Kentaro Nishioka, Takayuki Hashimoto, Hidefumi Aoyama, Kikuo Umegaki, Taeko Matsuura
    Medical physics 49 (1) 702 - 713 2022/01 [Refereed]
     
    PURPOSE: In the scanning beam delivery of protons, different portions of the target are irradiated with different linear energy transfer protons with various time intervals and irradiation times. This research aimed to evaluate the spatially dependent biological effectiveness of protracted irradiation in scanning proton therapy. METHODS: One and two parallel opposed fields plans were created in water phantom with the prescribed dose of 2 Gy. Three scenarios (instantaneous, continuous, and layered scans) were used with the corresponding beam delivery models. The biological dose (physical dose × relative biological effectiveness) was calculated using the linear quadratic model and the theory of dual radiation action to quantitatively evaluate the dose delivery time effect. In addition, simulations using clinical plans (postoperative seminoma and prostate tumor cases) were conducted to assess the impact of the effects on the dose volume histogram parameters and homogeneity coefficient (HC) in targets. RESULTS: In a single-field plan of water phantom, when the treatment time was 19 min, the layered-scan scenario showed a decrease of <0.2% (almost 3.3%) in the biological dose from the plan on the distal (proximal) side because of the high (low) dose rate. This is in contrast to the continuous scenario, where the biological dose was almost uniformly decreased over the target by approximately 3.3%. The simulation with clinical geometry showed that the decrease rates in D99% were 0.9% and 1.5% for every 10 min of treatment time prolongation for postoperative seminoma and prostate tumor cases, respectively, whereas the increase rates in HC were 0.7% and 0.2%. CONCLUSIONS: In protracted irradiation in scanning proton therapy, the spatially dependent dose delivery time structure in scanning beam delivery can be an important factor for accurate evaluation of biological effectiveness.
  • Kanako Ukon, Yohei Arai, Seishin Takao, Taeko Matsuura, Masayori Ishikawa, Hiroki Shirato, Shinichi Shimizu, Kikuo Umegaki, Naoki Miyamoto
    Journal of radiation research 62 (5) 926 - 933 2021/09/13 [Refereed]
     
    The purpose of this work is to show the usefulness of a prediction method of tumor location based on partial least squares regression (PLSR) using multiple fiducial markers. The trajectory data of respiratory motion of four internal fiducial markers inserted in lungs were used for the analysis. The position of one of the four markers was assumed to be the tumor position and was predicted by other three fiducial markers. Regression coefficients for prediction of the position of the tumor-assumed marker from the fiducial markers' positions is derived by PLSR. The tracking error and the gating error were evaluated assuming two possible variations. First, the variation of the position definition of the tumor and the markers on treatment planning computed tomograhy (CT) images. Second, the intra-fractional anatomical variation which leads the distance change between the tumor and markers during the course of treatment. For comparison, rigid predictions and ordinally multiple linear regression (MLR) predictions were also evaluated. The tracking and gating errors of PLSR prediction were smaller than those of other prediction methods. Ninety-fifth percentile of tracking/gating error in all trials were 3.7/4.1 mm, respectively in PLSR prediction for superior-inferior direction. The results suggested that PLSR prediction was robust to variations, and clinically applicable accuracy could be achievable for targeting tumors.
  • Sodai Tanaka, Naoki Miyamoto, Yuto Matsuo, Takaaki Yoshimura, Seishin Takao, Taeko Matsuura
    Physics in medicine and biology 66 (18) 2021/09/09 [Refereed]
     
    Increasing numbers of proton imaging research studies are being conducted for accurate proton range determination in proton therapy treatment planning. However, there is no proton imaging system that deals with motion artifacts. In this study, a gated proton imaging system was developed and the first experimental results of proton radiography (pRG) were obtained for a moving object without motion artifacts. A motion management system using dual x-ray fluoroscopy for detecting a spherical gold fiducial marker was introduced and the proton beam was gated in accordance with the motion of the object. To demonstrate the performance of the gated proton imaging system, gated pRG images of a moving phantom were acquired experimentally, and the motion artifacts clearly were diminished. Also, the factors causing image deteriorations were evaluated focusing on the new gating system developed here, and the main factor was identified as the latency (with a maximum value of 93 ms) between the ideal gating signal according to the actual marker position and the actual gating signal. The possible deterioration due to the latency of the proton imaging system and proton beam irradiation was small owing to appropriate setting of the time structure.
  • Risa Hayashi, Koichi Miyazaki, Seishin Takao, Kohei Yokokawa, Sodai Tanaka, Taeko Matsuura, Hiroshi Taguchi, Norio Katoh, Shinichi Shimizu, Kikuo Umegaki, Naoki Miyamoto
    Medical physics 48 (9) 5311 - 5326 2021/09 [Refereed]
     
    PURPOSE: To show the feasibility of real-time CT image generation technique utilizing internal fiducial markers that facilitate the evaluation of internal deformation. METHODS: In the proposed method, a linear regression model that can derive internal deformation from the displacement of fiducial markers is built for each voxel in the training process before the treatment session. Marker displacement and internal deformation are derived from the four-dimensional computed tomography (4DCT) dataset. In the treatment session, the three-dimensional deformation vector field is derived according to the marker displacement, which is monitored by the real-time imaging system. The whole CT image can be synthesized by deforming the reference CT image with a deformation vector field in real-time. To show the feasibility of the technique, image synthesis accuracy and tumor localization accuracy were evaluated using the dataset generated by extended NURBS-Based Cardiac-Torso (XCAT) phantom and clinical 4DCT datasets from six patients, containing 10 CT datasets each. In the validation with XCAT phantom, motion range of the tumor in training data and validation data were about 10 and 15 mm, respectively, so as to simulate motion variation between 4DCT acquisition and treatment session. In the validation with patient 4DCT dataset, eight CT datasets from the 4DCT dataset were used in the training process. Two excluded inhale CT datasets can be regarded as the datasets with large deformations more than training dataset. CT images were generated for each respiratory phase using the corresponding marker displacement. Root mean squared error (RMSE), normalized RMSE (NRMSE), and structural similarity index measure (SSIM) between the original CT images and the synthesized CT images were evaluated as the quantitative indices of the accuracy of image synthesis. The accuracy of tumor localization was also evaluated. RESULTS: In the validation with XCAT phantom, the mean NRMSE, SSIM, and three-dimensional tumor localization error were 7.5 ± 1.1%, 0.95 ± 0.02, and 0.4 ± 0.3 mm, respectively. In the validation with patient 4DCT dataset, the mean RMSE, NRMSE, SSIM, and three-dimensional tumor localization error in six patients were 73.7 ± 19.6 HU, 9.2 ± 2.6%, 0.88 ± 0.04, and 0.8 ± 0.6 mm, respectively. These results suggest that the accuracy of the proposed technique is adequate when the respiratory motion is within the range of the training dataset. In the evaluation with a marker displacement larger than that of the training dataset, the mean RMSE, NRMSE, and tumor localization error were about 100 HU, 13%, and <2.0 mm, respectively, except for one case having large motion variation. The performance of the proposed method was similar to those of previous studies. Processing time to generate the volumetric image was <100 ms. CONCLUSION: We have shown the feasibility of the real-time CT image generation technique for volumetric imaging.
  • Tomoki Bo, Hironobu Yasui, Tohru Shiga, Yuki Shibata, Masaki Fujimoto, Motofumi Suzuki, Kei Higashikawa, Naoki Miyamoto, Osamu Inanami, Yuji Kuge
    European journal of nuclear medicine and molecular imaging 49 (3) 821 - 833 2021/09/01 [Refereed]
     
    PURPOSE: Eribulin, an inhibitor of microtubule dynamics, is known to show antitumor effects through its remodeling activity in the tumor vasculature. However, the extent to which the improvement of tumor hypoxia by eribulin affects radio-sensitivity remains unclear. We utilized 1-(2,2-dihydroxymethyl-3-18F-fluoropropyl)-2-nitroimidazole (18F-DiFA), a new PET probe for hypoxia, to investigate the effects of eribulin on tumor hypoxia and evaluate the radio-sensitivity during eribulin treatment. METHODS: Mice bearing human breast cancer MDA-MB-231 cells or human lung cancer NCI-H1975 cells were administered a single dose of eribulin. After administration, mice were injected with 18F-DiFA and pimonidazole, and tumor hypoxia regions were analyzed. For the group that received combined treatment with radiation, 18F-DiFA PET/CT imaging was performed before tumors were locally X-irradiated. Tumor size was measured every other day after irradiation. RESULTS: Eribulin significantly reduced 18F-DiFA accumulation levels in a dose-dependent manner. Furthermore, the reduction in 18F-DiFA accumulation levels by eribulin was most significant 7 days after treatment. These results were also supported by reduction of the pimonidazole-positive hypoxic region. The combined treatment showed significant retardation of tumor growth in comparison with the control, radiation-alone, and drug-alone groups. Importantly, tumor growth after irradiation was inversely correlated with 18F-DiFA accumulation. CONCLUSION: These results demonstrated that 18F-DiFA PET/CT clearly detected eribulin-induced tumor oxygenation and that eribulin efficiently enhanced the antitumor activity of radiation by improving tumor oxygenation.
  • Yusuke Uchinami, Norio Katoh, Daisuke Abo, Hiroshi Taguchi, Koichi Yasuda, Kentaro Nishioka, Takeshi Soyama, Ryo Morita, Naoki Miyamoto, Ryusuke Suzuki, Takuya Sho, Masato Nakai, Koji Ogawa, Tatsuhiko Kakisaka, Tatsuya Orimo, Toshiya Kamiyama, Shinichi Shimizu, Hidefumi Aoyama
    Hepatology research : the official journal of the Japan Society of Hepatology 51 (8) 870 - 879 2021/08 [Refereed]
     
    AIM: To report the outcomes of stereotactic body radiotherapy using a real-time tumor-tracking radiotherapy system for hepatocellular carcinoma patients. METHODS: From January 2005 to July 2018, 63 patients with 74 lesions with a maximum diameter ≤52 mm were treated by stereotactic body radiotherapy using a real-time tumor-tracking radiotherapy system. No patient with a Child-Pugh Score ≥9 was included, and 85.6% had a score of 5 or 6. Using the biological effective dose (BED) with an α/β ratio of 10 (BED10 ), the median dose in BED10 at the reference point was 76.8 Gy (range 60-122.5 Gy). Overall survival (OS) and local control rates were assessed using the Kaplan-Meier method. RESULTS: With a median follow-up period of 24.6 months (range 0.9-118.4 months), the 1-year and 2-year OS rates were 86.8% (95% confidence interval [95% CI] 75.8-93.3) and 71.1% (57.8-81.6), respectively. The 2-year OS was 89.6% in patients with the baseline modified albumin-bilirubin (mALBI) grade =1, and 61.7% in patients with grade ≥2a. In the multivariate analysis, the mALBI grade (=1 vs. ≥2a) was a significant factor for OS (p = 0.028, 95% CI 1.11-6.18). The 1-year and 2-year local control rates were 100% (100-100%) and 92.0% (77.5-97.5%). The local control rates were significantly higher in the BED10 ≥100 Gy group than in the BED10 <100 Gy group (2-year 100% vs. 86.5%, p = 0.049) at the reference point. CONCLUSION: This retrospective study of stereotactic body radiotherapy using real-time tumor-tracking radiotherapy for hepatocellular carcinoma showed favorable outcomes with lower incidence of toxicities, especially in patients treated with BED10 ≥100 Gy to the reference point.
  • Takahiro Yamada, Seishin Takao, Hidenori Koyano, Hideaki Nihongi, Yusuke Fujii, Shusuke Hirayama, Naoki Miyamoto, Taeko Matsuura, Kikuo Umegaki, Norio Katoh, Isao Yokota, Hiroki Shirato, Shinichi Shimizu
    Journal of radiation research 62 (4) 626 - 633 2021/07/10 [Refereed]
     
    In spot scanning proton therapy (SSPT), the spot position relative to the target may fluctuate through tumor motion even when gating the radiation by utilizing a fiducial marker. We have established a procedure that evaluates the delivered dose distribution by utilizing log data on tumor motion and spot information. The purpose of this study is to show the reliability of the dose distributions for liver tumors treated with real-time-image gated SSPT (RGPT). In the evaluation procedure, the delivered spot information and the marker position are synchronized on the basis of log data on the timing of the spot irradiation and fluoroscopic X-ray irradiation. Then a treatment planning system reconstructs the delivered dose distribution. Dose distributions accumulated for all fractions were reconstructed for eight liver cases. The log data were acquired in all 168 fractions for all eight cases. The evaluation was performed for the values of maximum dose, minimum dose, D99, and D5-D95 for the clinical target volumes (CTVs) and mean liver dose (MLD) scaled by the prescribed dose. These dosimetric parameters were statistically compared between the planned dose distribution and the reconstructed dose distribution. The mean difference of the maximum dose was 1.3% (95% confidence interval [CI]: 0.6%-2.1%). Regarding the minimum dose, the mean difference was 0.1% (95% CI: -0.5%-0.7%). The mean differences of D99, D5-D95 and MLD were below 1%. The reliability of dose distributions for liver tumors treated with RGPT-SSPT was shown by the evaluation of the accumulated dose distributions.
  • Suguru Kimura, Naoki Miyamoto, Kenneth L Sutherland, Ryusuke Suzuki, Hiroki Shirato, Masayori Ishikawa
    Journal of applied clinical medical physics 22 (7) 165 - 176 2021/07 [Refereed]
     
    PURPOSE: The real-time tumor tracking radiotherapy (RTRT) system requires periodic quality assurance (QA) and quality control. The goal of this study is to propose QA procedures from the viewpoint of imaging devices in the RTRT system. METHODS: Tracking by the RTRT system (equips two sets of colored image intensifiers (colored I.I.s) fluoroscopy units) for the moving gold-marker (diameter 2.0 mm) in a rotating phantom were performed under various X-ray conditions. To analyze the relationship between fluoroscopic image quality and precision of gold marker coordinate calculation, the standard deviation of the 3D coordinate (σ3D [mm]) of the gold marker, the mean of the pattern recognition score (PRS) and the standard deviation of the distance between rays (DBR) (σDBR [mm]) were evaluated. RESULTS: When tracking with speed of 10-60 mm/s, σDBR increased, though the mean PRS did not change significantly (p>0.05). On the contrary, the mean PRS increased depending on the integral noise equivalent quanta (∫NEQ) that is an indicator of image quality calculated from the modulation transfer function (MTF) as an indicator of spatial resolution and the noise power spectrum (NPS) as an indicator of noise characteristic. CONCLUSION: The indicators of NEQ, MTF, and NPS were useful for managing the tracking accuracy of the RTRT system. We propose observing the change of these indicators as additional QA procedures for each imaging device from the commissioning baseline.
  • Katarzyna Czerska, Frank Emert, Renata Kopec, Katja Langen, Jamie R McClelland, Arturs Meijers, Naoki Miyamoto, Marco Riboldi, Shinichi Shimizu, Toshiyuki Terunuma, Wei Zou, Antje Knopf, Antoni Rucinski
    Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) 82 54 - 63 2021/02 [Refereed]
     
    The 4D Treatment Planning Workshop for Particle Therapy, a workshop dedicated to the treatment of moving targets with scanned particle beams, started in 2009 and since then has been organized annually. The mission of the workshop is to create an informal ground for clinical medical physicists, medical physics researchers and medical doctors interested in the development of the 4D technology, protocols and their translation into clinical practice. The 10th and 11th editions of the workshop took place in Sapporo, Japan in 2018 and Krakow, Poland in 2019, respectively. This review report from the Sapporo and Krakow workshops is structured in two parts, according to the workshop programs. The first part comprises clinicians and physicists review of the status of 4D clinical implementations. Corresponding talks were given by speakers from five centers around the world: Maastro Clinic (The Netherlands), University Medical Center Groningen (The Netherlands), MD Anderson Cancer Center (United States), University of Pennsylvania (United States) and The Proton Beam Therapy Center of Hokkaido University Hospital (Japan). The second part is dedicated to novelties in 4D research, i.e. motion modelling, artificial intelligence and new technologies which are currently being investigated in the radiotherapy field.
  • Koki Kasamatsu, Taeko Matsuura, Sodai Tanaka, Seishin Takao, Naoki Miyamoto, Jin-Min Nam, Hiroki Shirato, Shinichi Shimizu, Kikuo Umegaki
    Medical physics 47 (9) 4644 - 4655 2020/07/11 [Refereed][Not invited]
     
    PURPOSE: The purpose of this study is to evaluate the sub-lethal damage (SLD) repair effect in prolonged proton irradiation using the biophysical model with various cell-specific parameters of (α/β)x and T1/2 (repair half time). At present, most of the model-based studies on protons have focused on acute radiation, neglecting the reduction in biological effectiveness due to SLD repair during the delivery of radiation. Nevertheless, the dose-rate dependency of biological effectiveness may become more important as advanced treatment techniques, such as hypofractionation and respiratory gating, come into clinical practice, as these techniques sometimes require long treatment times. Also, while previous research using the biophysical model revealed a large repair effect with a high physical dose, the dependence of the repair effect on cell-specific parameters has not been evaluated systematically. METHODS: Biological dose (relative biological effectiveness (RBE) × physical dose) calculation with repair included was carried out using the linear energy transfer (LET)-dependent linear-quadratic (LQ) model combined with the theory of dual radiation action (TDRA). First, we extended the dose protraction factor in the LQ model for the arbitrary number of different LET proton irradiations delivered sequentially with arbitrary time lags, referring to the TDRA. Using the LQ model, the decrease in biological dose due to SLD repair was systematically evaluated for spread-out Bragg peak (SOBP) irradiation in a water phantom with the possible ranges of both (α/β)x and repair parameters ((α/β)x = 1-15 Gy, T1/2 = 0-90 min). Then, to consider more realistic irradiation conditions, clinical cases of prostate, liver, and lung tumors were examined with the cell-specific parameters for each tumor obtained from the literature. Biological D99% and biological dose homogeneity coefficient (HC) were calculated for the clinical target volumes (CTVs), assuming dose-rate structures with a total irradiation time of 0-60 min. RESULTS: The differences in the cell-specific parameters resulted in considerable variation in the repair effect. The biological dose reduction found at the center of the SOBP with 30 min of continuous irradiation varied from 1.13% to 14.4% with a T1/2 range of 1-90 min when (α/β)x is fixed as 10 Gy. It varied from 2.3% to 6.8% with an (α/β)x range of 1-15 Gy for a fixed value of T1/2 = 30 min. The decrease in biological D99% per 10 min was 2.6, 1.2, and 3.0% for the prostate, liver, and lung tumor cases, respectively. The value of the biological D99% reduction was neither in the order of (α/β)x nor prescribed dose, but both comparably contributed to the repair effect. The variation of HC was within the range of 0.5% for all cases; therefore, the dose distribution was not distorted. CONCLUSION: The reduction in biological dose caused by the SLD repair largely depends on the cell-specific parameters in addition to the physical dose. The parameters should be considered carefully in the evaluation of the repair effect in prolonged proton irradiation.
  • Shusuke Hirayama, Taeko Matsuura, Koichi Yasuda, Seishin Takao, Takaaki Fujii, Naoki Miyamoto, Kikuo Umegaki, Shinichi Shimizu
    Journal of applied clinical medical physics 21 (4) 42 - 50 2020/04 [Refereed]
     
    PURPOSE: While a large amount of experimental data suggest that the proton relative biological effectiveness (RBE) varies with both physical and biological parameters, current commercial treatment planning systems (TPS) use the constant RBE instead of variable RBE models, neglecting the dependence of RBE on the linear energy transfer (LET). To conduct as accurate a clinical evaluation as possible in this circumstance, it is desirable that the dosimetric parameters derived by TPS ( D RBE = 1.1 ) are close to the "true" values derived with the variable RBE models ( D v RBE ). As such, in this study, the closeness of D RBE = 1.1 to D v RBE was compared between planning target volume (PTV)-based and robust plans. METHODS: Intensity-modulated proton therapy (IMPT) treatment plans for two Radiation Therapy Oncology Group (RTOG) phantom cases and four nasopharyngeal cases were created using the PTV-based and robust optimizations, under the assumption of a constant RBE of 1.1. First, the physical dose and dose-averaged LET (LETd ) distributions were obtained using the analytical calculation method, based on the pencil beam algorithm. Next, D v RBE was calculated using three different RBE models. The deviation of D v RBE from D RBE = 1.1 was evaluated with D99 and Dmax , which have been used as the evaluation indices for clinical target volume (CTV) and organs at risk (OARs), respectively. The influence of the distance between the OAR and CTV on the results was also investigated. As a measure of distance, the closest distance and the overlapped volume histogram were used for the RTOG phantom and nasopharyngeal cases, respectively. RESULTS: As for the OAR, the deviations of D max v RBE from D max RBE = 1.1 were always smaller in robust plans than in PTV-based plans in all RBE models. The deviation would tend to increase as the OAR was located closer to the CTV in both optimization techniques. As for the CTV, the deviations of D 99 v RBE from D 99 RBE = 1.1 were comparable between the two optimization techniques, regardless of the distance between the CTV and the OAR. CONCLUSION: Robust optimization was found to be more favorable than PTV-based optimization in that the results presented by TPS were closer to the "true" values and that the clinical evaluation based on TPS was more reliable.
  • Naoki Miyamoto, Kouhei Yokokawa, Seishin Takao, Taeko Matsuura, Sodai Tanaka, Shinichi Shimizu, Hiroki Shirato, Kikuo Umegaki
    Journal of applied clinical medical physics 21 (4) 13 - 21 2020/02/18 [Refereed][Not invited]
     
    Spot-scanning particle therapy possesses advantages, such as high conformity to the target and efficient energy utilization compared with those of the passive scattering irradiation technique. However, this irradiation technique is sensitive to target motion. In the current clinical situation, some motion management techniques, such as respiratory-gated irradiation, which uses an external or internal surrogate, have been clinically applied. In surrogate-based gating, the size of the gating window is fixed during the treatment in the current treatment system. In this study, we propose a dynamic gating window technique, which optimizes the size of gating window for each spot by considering a possible dosimetric error. The effectiveness of the dynamic gating window technique was evaluated by simulating irradiation using a moving target in a water phantom. In dosimetric characteristics comparison, the dynamic gating window technique exhibited better performance in all evaluation volumes with different effective depths compared with that of the fixed gate approach. The variation of dosimetric characteristics according to the target depth was small in dynamic gate compared to fixed gate. These results suggest that the dynamic gating window technique can maintain an acceptable dose distribution regardless of the target depth. The overall gating efficiency of the dynamic gate was approximately equal or greater than that of the fixed gating window. In dynamic gate, as the target depth becomes shallower, the gating efficiency will be reduced, although dosimetric characteristics will be maintained regardless of the target depth. The results of this study suggest that the proposed gating technique may potentially improve the dose distribution. However, additional evaluations should be undertaken in the future to determine clinical applicability by assuming the specifications of the treatment system and clinical situation.
  • Yasuhiro Dekura, Kentaro Nishioka, Takayuki Hashimoto, Naoki Miyamoto, Ryusuke Suzuki, Takaaki Yoshimura, Ryuji Matsumoto, Takahiro Osawa, Takashige Abe, Yoichi M Ito, Nobuo Shinohara, Hiroki Shirato, Shinichi Shimizu
    Radiation oncology (London, England) 14 (1) 226 - 226 2019/12/12 [Refereed][Not invited]
     
    PURPOSE: To determine the best method to contour the planning organ at risk volume (PRV) for the urethra, this study aimed to investigate the displacement of a Foley catheter in the urethra with a soft and thin guide-wire. METHODS: For each patient, the study used two sets of computed tomography (CT) images for radiation treatment planning (RT-CT): (1) set with a Foley urethral catheter (4.0 mm diameter) plus a guide-wire (0.46 mm diameter) in the first RT-CT and (2) set with a guide-wire alone in the second CT recorded 2 min after the first RT-CT. Using three fiducial markers in the prostate for image fusion, the displacement between the catheter and the guide-wire in the prostatic urethra was calculated. In 155 consecutive patients treated between 2011 and 2017, 5531 slices of RT-CT were evaluated. RESULTS: Assuming that ≥3.0 mm of difference between the catheter and the guide-wire position was a significant displacement, the urethra with the catheter was displaced significantly from the urethra with the guide-wire alone in > 20% of the RT-CT slices in 23.2% (36/155) of the patients. The number of patients who showed ≥3.0 mm anterior displacement with the catheter in ≥20% RT-CT slices was significantly larger at the superior segment (38/155) than at the middle (14/155) and inferior segments (18/155) of the prostatic urethra (p < 0.0167). CONCLUSIONS: The urethral position with a Foley catheter is different from the urethral position with a thin and soft guide-wire in a significant proportion of the patients. This should be taken into account for the PRV of the urethra to ensure precise radiotherapy such as in urethra-sparing radiotherapy.
  • S. Tanaka, N. Miyamoto, T. Nishio, T. Yoshimura, S. Takao, Y. Matsuo, S. Shimizu, H. Shirato, T. Matsuura
    Radiotherapy and Oncology 141 S32 - S33 0167-8140 2019/12
  • Daichi Kando, Satoshi Tomioka, Naoki Miyamoto, Ryosuke Ueda
    APPLIED SCIENCES-BASEL 9 (17) 2019/09 [Refereed]
     
    In an optical measurement system using an interferometer, a phase extracting technique from interferogram is the key issue. When the object is varying in time, the Fourier-transform method is commonly used since this method can extract a phase image from a single interferogram. However, there is a limitation, that an interferogram including closed-fringes cannot be applied. The closed-fringes appear when intervals of the background fringes are long. In some experimental setups, which need to change the alignments of optical components such as a 3-D optical tomographic system, the interval of the fringes cannot be controlled. To extract the phase from the interferogram including the closed-fringes we propose the use of deep learning. A large amount of the pairs of the interferograms and phase-shift images are prepared, and the trained network, the input for which is an interferogram and the output a corresponding phase-shift image, is obtained using supervised learning. From comparisons of the extracted phase, we can demonstrate that the accuracy of the trained network is superior to that of the Fourier-transform method. Furthermore, the trained network can be applicable to the interferogram including the closed-fringes, which is impossible with the Fourier transform method.
  • H. Minatogawa, K. Yasuda, T. Matsuura, R. Onimaru, T. Yoshimura, S. Takao, Y. Matsuo, Y. Dekura, R. Suzuki, M. Tamura, N. Miyamoto, S. Shimizu, H. Shirato
    International Journal of Radiation Oncology*Biology*Physics 105 (1) E394 - E394 0360-3016 2019/09
  • Morita R, Abo D, Sakuhara Y, Soyama T, Katoh N, Miyamoto N, Uchinami Y, Shimizu S, Shirato H, Kudo K
    Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy 29 (6) 1 - 10 1364-5706 2019/09 [Refereed][Not invited]
     
    Purpose: This study evaluated the success rate and complications of percutaneous implantation of hepatic fiducial true-spherical gold markers for real-time adaptive radiotherapy (RAR), which constitutes real-time image-guided radiotherapy with gating.Material and methods: We retrospectively evaluated 100 patients who underwent 116 percutaneous intrahepatic implantations of 2-mm-diameter, spherical, gold fiducial markers before RAR from 1999 to 2016, with Seldinger's method. We defined technical success as marker placement at the intended liver parenchyma, without mispositioning, and clinical success as successful tracking of the gold marker and completion of planned RAR. Complications related to marker placement were assessed.Results: The technical success rate for true-spherical gold marker implantation was 92.2% (107/116). Nine of 116 markers migrated (intra-procedurally in seven patients, delayed in two patients). Migration out of the liver (n = 4) or intrahepatic vessels (n = 5) occurred without complications; these markers were not retrieved. The clinical success rate was 100.0% (115/115). Abdominal pain occurred in 16 patients, fever and hemorrhage in seven patients each, and pneumothorax and nausea in one patient each. No major complications were encountered.Conclusions: Percutaneous transhepatic implantation of true-spherical gold markers for RAR is feasible and can be conducted with a high success rate and low complication rate.
  • Uchinami Y, Suzuki R, Katoh N, Taguchi H, Yasuda K, Miyamoto N, Ito YM, Shimizu S, Shirato H
    Journal of applied clinical medical physics 20 (8) 78 - 86 2019/08 [Refereed][Not invited]
     
    PURPOSE: Interplay effects may influence dose distributions to a moving target when using dynamic delivery techniques such as intensity-modulated radiotherapy (IMRT). The aim of this study was to evaluate the impact of organ motion on volumetric and dosimetric parameters in stomach lymphomas treated with IMRT. METHODS: Ten patients who had been treated with IMRT for stomach lymphomas were enrolled. The clinical target volume (CTV) was contoured as the whole stomach. Considering interfractional uncertainty, the internal target volume (ITV) margin was uniformly 1.5 cm to the CTV and then modified based on the 4DCT images in case of the large respiratory motion. The planning target volume (PTV) was created by adding 5 mm to the ITV. The impact of organ motion on the volumetric and dosimetric parameters was evaluated retrospectively (4D simulation). The organ motion was reproduced by shifting the isocenter on the radiation treatment planning system. Several simulation plans were created to test the influence of the beam-on timing in the respiration cycle on the dose distribution. The homogeneity index (HI), volume percentage of stomach covered by the prescribed dose (Vp ), and D99 of the CTV were evaluated. RESULTS: The organ motion was the largest in the superior-inferior direction (10.1 ± 4.5 mm [average ± SD]). Stomach volume in each respiratory phase compared to the mean volume varied approximately within a ± 5% range in most of the patients. The PTV margin was sufficiently large to cover the CTV during the IMRT. There was a significant reduction in Vp and D99 but not in HI in the 4D simulation in free-breathing and multiple fractions compared to the clinically-used plan (P < 0.05) suggesting that interplay effects deteriorate the dose distribution. The absolute difference of D99 was less than 1% of the prescribed dose. CONCLUSIONS: There were significant interplay effects affecting the dose distribution in stomach IMRT. The magnitude of the dose reduction was small when patients were treated on free-breathing and multiple fractions.
  • Quantitative evaluation of image recognition performance of fiducial markers in real-time tumor-tracking radiation therapy.
    Miyamoto N, Maeda K, Abo D, Morita R, Takao S, Matsuura T, Katoh N, Umegaki K, Shimizu S, Shirato H
    Physica Medica 65 33 - 36 2019/08 [Refereed][Not invited]
  • 強度変調放射線治療中に皮下気腫をきたし,再検証を要した頭頸部癌患者の1例
    湊川 英樹, 安田 耕一, 白土 博樹, 土屋 和彦, 鈴木 隆介, 宮本 直樹, 坂下 智博, 本間 明宏, 福田 諭
    Japanese Journal of Radiology (公社)日本医学放射線学会 37 (Suppl.) 4 - 4 1867-1071 2019/02
  • Satoshi Tomioka, Shusuke Nishiyama, Yutaka Matsumoto, Naoki Miyamoto
    Engineering Analysis with Boundary Elements 106 493 - 504 2019 [Refereed][Not invited]
  • Ryusuke Suzuki, Naoki Miyamoto, Seishin Takao, Shinichi Shimizu
    Igaku butsuri : Nihon Igaku Butsuri Gakkai kikanshi = Japanese journal of medical physics : an official journal of Japan Society of Medical Physics 39 (2) 54 - 56 2019
  • Yuki Shibata, Hironobu Yasui, Kei Higashikawa, Naoki Miyamoto, Yuji Kuge
    PloS one 14 (12) e0225931  2019 [Refereed]
     
    High concentrations of antioxidants in cancer cells are huge obstacle in cancer radiotherapy. Erastin was first discovered as an inducer of iron-dependent cell death called ferroptosis accompanied by antioxidant depletion caused by cystine glutamate antiporter inhibition. Therefore, treatment with erastin is expected to potentially enhance cellular radiosensitivity. In this study, we investigated the influence of treatment with erastin on the radiation efficiency against cancers. The clonogenic ability, glutathione peroxidase 4 (GPX4) expression, and glutathione concentration were evaluated using HeLa and NCI-H1975 adenocarcinoma cell lines treated with erastin and/or X-ray irradiation. For in vivo studies, NCI-H1975 cells were transplanted in the left shoulder of nude mice, and then radiosensitizing effect of erastin and glutathione concentration in the cancer were evaluated. Treatment with erastin induced ferroptosis and decreased the concentration of glutathione and GPX4 protein expression levels in the two tumor cell lines. Moreover, erastin enhanced X-ray irradiation-induced cell death in both human tumor cell lines. Furthermore, erastin treatment of a tumor-transplanted mouse model similarly demonstrated the radiosensitizing effect and decrease in intratumoral glutathione concentration in the in vitro study. In conclusion, our study demonstrated the radiosensitizing effect of erastin on two adenocarcinoma cell lines and the tumor xenograft model accompanied by glutathione depletion, indicating that ferroptosis inducers that reduce glutathione concentration could be applied as a novel cancer therapy in combination with radiotherapy.
  • 3D Transformation Matrix Calculation and Pixel Intensity Normalization for the Dual Focus Tracking System
    Kenneth Sutherland, Toshiyuki Hamada, Masayori Ishikawa, Naoki Miyamoto, Masahiro Mizuta, Hiroyuki Date, Hiroki Shirato
    Journal of Medical and Biological Engineering 2019 [Refereed][Not invited]
  • S. Shimizu, T. Yoshimura, N. Katoh, T. Inoue, T. Hashimoto, K. Nishioka, S. Takao, T. Matsuura, N. Miyamoto, Y.M. Ito, K. Umegaki, H. Shirato
    International Journal of Radiation Oncology*Biology*Physics 102 (3) S182 - S183 0360-3016 2018/11
  • Katoh N, Onishi H, Uchinami Y, Inoue T, Kuriyama K, Nishioka K, Shimizu S, Komiyama T, Miyamoto N, Shirato H
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT 17 1533033818809983 - 1533033818809983 1533-0346 2018/11 [Refereed][Not invited]
     
    BACKGROUND: Precise local radiotherapy for adrenal metastasis can prolong the useful life of patients with oligometastasis. The aim of this retrospective, 2-center study was to establish the safety and effectiveness of real-time tumor-tracking radiotherapy and general stereotactic body radiotherapy in treating patients with adrenal metastatic tumors. MATERIALS AND METHODS: Thirteen lesions in 12 patients were treated with real-time tumor-tracking radiotherapy (48 Gy in 8 fractions over 2 weeks) and 8 lesions in 8 patients were treated with general stereotactic body radiotherapy (40-50 Gy in 5-8 fractions over 2 weeks or 60-70 Gy in 10 fractions over 2 weeks). Overall survival rates, local control rates, and adverse effects were analyzed. RESULTS: The actuarial overall survival rates for all patients at 1 and 2 years were 78.5% and 45.8%, respectively, with a median follow-up of 17.5 months, and the actuarial local control rates for all tumors at 1 and 2 years were 91.7% and 53.0%, respectively, with a median follow-up of 9 months. A complete local tumor response was obtained in 3 tumors treated by real-time tumor-tracking radiotherapy (lung adenocarcinomas with diameters of 35, 40, and 60 mm). There was a statistically significant difference in the local control between the groups treated by real-time tumor-tracking radiotherapy (100% at 1 year) and general stereotactic body radiotherapy (50% at 1 year; P < .001). No late adverse reactions at Grade 2 or higher were reported for either treatment group. CONCLUSIONS: This study showed that although both treatments are safe and effective, the real-time tumor-tracking radiotherapy is more effective than general stereotactic body radiotherapy in local control for adrenal metastasis.
  • Dekura Yasuhiro, Nishioka Kentaro, Hashimoto Takayuki, Miyamoto Naoki, Suzuki Ryusuke, Matsumoto Ryuji, Osawa Takahiro, Abe Takashige, Maruyama Satoru, Shinohara Nobuo, Shirato Hiroki, Shimizu Shinichi
    INTERNATIONAL JOURNAL OF UROLOGY 25 445 - 445 0919-8172 2018/10 [Refereed][Not invited]
  • Hirayama S, Matsuura T, Ueda H, Fujii Y, Fujii T, Takao S, Miyamoto N, Shimizu S, Fujimoto R, Umegaki K, Shirato H
    Medical physics 45 (7) 3404 - 3416 0094-2405 2018/07 [Refereed][Not invited]
     
    PURPOSE: To evaluate the biological effects of proton beams as part of daily clinical routine, fast and accurate calculation of dose-averaged linear energy transfer (LETd ) is required. In this study, we have developed the analytical LETd calculation method based on the pencil-beam algorithm (PBA) considering the off-axis enhancement by secondary protons. This algorithm (PBA-dLET) was then validated using Monte Carlo simulation (MCS) results. METHODS: In PBA-dLET, LET values were assigned separately for each individual dose kernel based on the PBA. For the dose kernel, we employed a triple Gaussian model which consists of the primary component (protons that undergo the multiple Coulomb scattering) and the halo component (protons that undergo inelastic, nonelastic and elastic nuclear reaction); the primary and halo components were represented by a single Gaussian and the sum of two Gaussian distributions, respectively. Although the previous analytical approaches assumed a constant LETd value for the lateral distribution of a pencil beam, the actual LETd increases away from the beam axis, because there are more scattered and therefore lower energy protons with higher stopping powers. To reflect this LETd behavior, we have assumed that the LETs of primary and halo components can take different values (LETp and LEThalo ), which vary only along the depth direction. The values of dual-LET kernels were determined such that the PBA-dLET reproduced the MCS-generated LETd distribution in both small and large fields. These values were generated at intervals of 1 mm in depth for 96 energies from 70.2 to 220 MeV and collected in the look-up table. Finally, we compared the LETd distributions and mean LETd (LETd,mean ) values of targets and organs at risk between PBA-dLET and MCS. Both homogeneous phantom and patient geometries (prostate, liver, and lung cases) were used to validate the present method. RESULTS: In the homogeneous phantom, the LETd profiles obtained by the dual-LET kernels agree well with the MCS results except for the low-dose region in the lateral penumbra, where the actual dose was below 10% of the maximum dose. In the patient geometry, the LETd profiles calculated with the developed method reproduces MCS with the similar accuracy as in the homogeneous phantom. The maximum differences in LETd,mean for each structure between the PBA-dLET and the MCS were 0.06 keV/μm in homogeneous phantoms and 0.08 keV/μm in patient geometries under all tested conditions, respectively. CONCLUSIONS: We confirmed that the dual-LET-kernel model well reproduced the MCS, not only in the homogeneous phantom but also in complex patient geometries. The accuracy of the LETd was largely improved from the single-LET-kernel model, especially at the lateral penumbra. The model is expected to be useful, especially for proper recognition of the risk of side effects when the target is next to critical organs.
  • 同時期に異所性に発生した悪性腫瘍に対して、二部位同時にIMRTを施行した症例
    湊川 英樹, 安田 耕一, 白土 博樹, 土屋 和彦, 原田 八重, 水町 貴諭, 坂下 智博, 本間 明宏, 福田 諭, 石嶋 漢, 宮本 直樹, 高尾 聖心, 鈴木 隆介, 松浦 妙子, 牧永 綾乃, 田村 昌也
    Japanese Journal of Radiology (公社)日本医学放射線学会 36 (Suppl.) 6 - 6 1867-1071 2018/02 [Not refereed][Not invited]
  • Satoshi Tomioka, Shusuke Nishiyama, Naoki Miyamoto, Daichi Kando, Samia Heshmat
    APPLIED OPTICS 56 (24) 6755 - 6764 1559-128X 2017/08 [Refereed][Not invited]
     
    Interferometric tomography can reconstruct 3D refractive-index distributions through phase-shift measurements for different beam angles. To reconstruct a complex refractive-index distribution, many projections along different directions are required. For the purpose of increasing the number of the projections, we earlier proposed a beam-angle-controllable interferometer with mechanical stages; however, the quality of reconstructed distribution by conventional algorithms was poor because the background fringes cannot be precisely controlled. To improve the quality, we propose a weighted reconstruction algorithm that can consider projection errors. We demonstrate the validity of the weighted reconstruction through simulations and a reconstruction from experimental data for three candle flames. (C) 2017 Optical Society of America
  • Yusuke Fujii, Taeko Matsuura, Seishin Takao, Yuka Matsuzaki, Takaaki Fujii, Naoki Miyamoto, Kikuo Umegaki, Kentaro Nishioka, Shinichi Shimizu, Hiroki Shirato
    JOURNAL OF RADIATION RESEARCH 58 (4) 591 - 597 0449-3060 2017/07 [Refereed][Not invited]
     
    For proton spot scanning, use of a real-time-image gating technique incorporating an implanted marker and dual fluoroscopy facilitates mitigation of the dose distribution deterioration caused by interplay effects. This study explored the advantages of using a real-time-image gating technique, with a focus on prostate cancer. Two patient-positioning methods using fiducial markers were compared: (i) patient positioning only before beam delivery, and (ii) patient positioning both before and during beam delivery using a real-time-gating technique. For each scenario, dose distributions were simulated using the CT images of nine prostate cancer patients. Treatment plans were generated using a single-field proton beam with 3-mm and 6-mm lateral margins. During beam delivery, the prostate was assumed to move by 5 mm in four directions that were perpendicular to the beam direction at one of three separate timings (i.e. after the completion of the first, second and third quartiles of the total delivery of spot irradiation). Using a 3-mm margin and second quartile motion timing, the averaged values for Delta D-99, Delta D-95, Delta D-5 and D5-95 were 5.1%, 3.3%, 3.6% and 9.0%, respectively, for Scenario (i) and 2.1%, 1.5%, 0.5% and 4.1%, respectively, for Scenario (ii). The margin expansion from 3 mm to 6 mm reduced the size of Delta D-99, Delta D-95, Delta D-5 and D5-95 only with Scenario (i). These results indicate that patient positioning during beam delivery is an effective way to obtain better target coverage and uniformity while reducing the target margin when the prostate moves during irradiation.
  • Kentaro Nishioka, Shinichi Shimizu, Nobuo Shinohara, Yoichi M. Ito, Takashige Abe, Satoru Maruyama, Norio Katoh, Rumiko Kinoshita, Takayuki Hashimoto, Naoki Miyamoto, Rikiya Onimaru, Hiroki Shirato
    RADIATION ONCOLOGY 12 (1) 44  1748-717X 2017/03 [Refereed][Not invited]
     
    Background: Current adaptive and dose escalating radiotherapy for muscle invasive bladder cancer requires knowledge of both inter-fractional and intra-fractional motion of the bladder wall involved. The purpose of this study is to characterize inter-and intra-fractional movement of the partial bladder wall using implanted fiducial markers and a real-time tumor-tracking radiotherapy system. Methods: Two hundred fifty one sessions with 29 patients were analysed. After maximal transurethral bladder tumor resection and 40 Gy of whole bladder irradiation, up to six gold markers were implanted transurethrally into the bladder wall around the tumor bed and used for positional registration. We compared the systematic and random uncertainty of positions between cranial vs. caudal, left vs. right, and anterior vs. posterior tumor groups. The variance in intrafractional movement and the percentage of sessions where 3 mm and 5 mm or more of intrafractional wall movement occurring at 2, 4, 6, 8, 10, and at more than 10 min until the end of a session were determined. Results: The cranial and anterior tumor group showed larger interfractional uncertainties in the position than the opposite side tumor group in the CC and AP directions respectively, but these differences did not reach significance. Among the intrafractional uncertainty of position, the cranial and anterior tumor group showed significantly larger systematic uncertainty of position than the groups on the opposite side in the CC direction. The variance of intrafractional movement increased over time; the percentage of sessions where intrafractional wall movement was larger than 3 mm within 2 min of the start of a radiation session or larger than 5 mm within 10 min was less than 5%, but this percentage was increasing further during the session, especially in the cranial and anterior tumor group. Conclusions: More attention for intrafractional uncertainty of position is required in the treatment of cranial and anterior bladder tumors especially in the CC direction. The optimal internal margins in each direction should be chosen or a precise intrafractional target localization system is required depending on the tumor location and treatment delivery time in the setting of partial bladder radiotherapy.
  • Takahiro Kanehira, Taeko Matsuura, Seishin Takao, Yuka Matsuzaki, Yusuke Fujii, Takaaki Fujii, Yoichi M. Ito, Naoki Miyamoto, Tetsuya Inoue, Norio Katoh, Shinichi Shimizu, Kikuo Umegaki, Hiroki Shirato
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS 97 (1) 173 - 181 0360-3016 2017/01 [Refereed][Not invited]
     
    Purpose: To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). Methods and Materials: A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of +/- 1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 > 95% and D5 to D95 < 5%, V20 for the normal lung, and treatment times were evaluated. Results: Gating windows <= +/- 2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs >= +/- 3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs >= +/- 4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the +/- 1-mm GW, but less than 226 seconds (292 seconds) for the +/- 2-mm GW. The maximum increased considerably at +/- 1-mm GW. Conclusion: Real-time-image gated proton beam therapy with a GW of +/- 2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time. (C) 2016 Elsevier Inc. All rights reserved.
  • 自由行動マウスの複数組織における時計遺伝子発現のin vivo追跡定量化 (Best articles of the year)
    浜田俊幸, ケネスリーサザーランド, 石川正純, 宮本直樹, 本間さと, 白土博樹, 本間研一
    The Hokkaido Journal of Medical Science 91 (2) 2016/11 [Refereed][Not invited]
  • Takahiro Yamada, Naoki Miyamoto, Taeko Matsuura, Seishin Takao, Yusuke Fujii, Yuka Matsuzaki, Hidenori Koyano, Masumi Umezawa, Hideaki Nihongi, Shinichi Shimizu, Hiroki Shirato, Kikuo Umegaki
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS 32 (7) 932 - 937 1120-1797 2016/07 [Refereed][Not invited]
     
    Purpose: To find the optimum parameter of a new beam control function installed in a synchrotron-based proton therapy system. Methods: A function enabling multiple gated irradiation in the flat top phase has been installed in a real-time-image gated proton beam therapy (RGPT) system. This function is realized by a waiting timer that monitors the elapsed time from the last gate-off signal in the flat top phase. The gated irradiation efficiency depends on the timer value, T-w. To find the optimum Tw value, gated irradiation efficiency was evaluated for each configurable T-w value. 271 gate signal data sets from 58 patients were used for the simulation. Results: The highest mean efficiency 0.52 was obtained in T-W = 0.2 s. The irradiation efficiency was approximately 21% higher than at T-W = 0 s, which corresponds to ordinary synchrotron operation. The irradiation efficiency was improved in 154 (57%) of the 271 cases. The irradiation efficiency was reduced in 117 cases because the T-W value was insufficient or the function introduced an unutilized wait time for the next gate-on signal in the flat top phase. In the actual treatment of a patient with a hepatic tumor at T-w = 0.2 s, 4.48 GyE irradiation was completed within 250 s. In contrast, the treatment time of ordinary synchrotron operation was estimated to be 420 s. Conclusions: The results suggest that the multiple gated-irradiation function has potential to improve the gated irradiation efficiency and to reduce the treatment time. (C) 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
  • Toshiyuki Hamada, Kenneth Sutherland, Masayori Ishikawa, Naoki Miyamoto, Sato Honma, Hiroki Shirato, Ken-ichi Honma
    NATURE COMMUNICATIONS 7 2041-1723 2016/06 [Refereed][Not invited]
     
    Clock genes are expressed throughout the body, although how they oscillate in unrestrained animals is not known. Here, we show an in vivo imaging technique that enables long-term simultaneous imaging of multiple tissues. We use dual-focal 3D tracking and signal-intensity calibration to follow gene expression in a target area. We measure circadian rhythms of clock genes in the olfactory bulb, right and left ears and cortices, and the skin. In addition, the kinetic relationship between gene expression and physiological responses to experimental cues is monitored. Under stable conditions gene expression is in phase in all tissues. In response to a long-duration light pulse, the olfactory bulb shifts faster than other tissues. In Cry1(-/-) Cry2(-/-) arrhythmic mice circadian oscillation is absent in all tissues. Thus, our system successfully tracks circadian rhythms in clock genes in multiple tissues in unrestrained mice.
  • Keiichi Harada, Norio Katoh, Ryusuke Suzuki, Yoichi M. Ito, Shinichi Shimizu, Rikiya Onimaru, Tetsuya Inoue, Naoki Miyamoto, Hiroki Shirato
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS 32 (2) 305 - 311 1120-1797 2016/02 [Refereed][Not invited]
     
    Purpose: We investigated the usefulness of four-dimensional computed tomography (4DCT) performed before stereotactic body radiation therapy (SBRT) in determining the internal margins for peripheral lung tumors. Methods and Materials: The amplitude of the movement of a fiducial marker near a lung tumor measured using the maximum intensity projection (MIP) method in 4DCT imaging was acquired before the SBRT (Amp(CT)) and compared with the mean amplitude of the marker movement during SBRT (Amp(mean)) and with the maximum amplitude of the marker movement during SBRT (Amp(max)) using a real-time tumortracking radiotherapy (RTRT) system with 22 patients. Results: There were no significant differences between the means of the Amp(mean) and the means of the Amp(CT) in all directions (LR, P = 0.45; CC, P = 0.80; AP, P = 0.65). The means of the Amp(max) were significantly larger than the means of the Amp(CT) in all directions (LR, P < 0.01; CC, P = 0.03; AP, P < 0.01). In the lower lobe, the mean difference of the Amp(CT) from the mean of the Amp(max) was 5.7 +/- 8.0 mm, 12.5 +/- 16.7 mm, and 6.8 +/- 8.5 mm in the LR, CC, and AP directions, respectively. Conclusions: Acquiring 4DCT MIP images before the SBRT treatment is useful to establish the mean amplitude for a patient during SBRT but it underestimates the maximum amplitude during actual SBRT. Caution must be paid to determine the margin with the 4DCT especially for tumors at the lower lobe where it is of the potentially greatest benefit. (C) 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd.
  • Taeko Matsuura, Yusuke Fujii, Seishin Takao, Takahiro Yamada, Yuka Matsuzaki, Naoki Miyamoto, Taisuke Takayanagi, Shinichiro Fujitaka, Shinichi Shimizu, Hiroki Shirato, Kikuo Umegaki
    PHYSICS IN MEDICINE AND BIOLOGY 61 (4) 1515 - 1531 0031-9155 2016/02 [Refereed][Not invited]
     
    Treatment of superficial tumors that move with respiration (e.g. lung tumors) using spot-scanning proton therapy (SSPT) is a high-priority research area. The recently developed real-time image-gated proton beam therapy (RGPT) system has proven to be useful for treating moving tumors deep inside the liver. However, when treating superficial tumors, the proton's range is small and so is the sizes of range straggling, making the Bragg-peaks extremely sharp compared to those located in deep-seated tumors. The extreme sharpness of Bragg-peaks is not always beneficial because it necessitates a large number of energy layers to make a spread-out Bragg-peak, resulting in long treatment times, and is vulnerable to motion-induced dose deterioration. We have investigated a method to treat superficial moving tumors in the lung by the development of an applicator compatible with the RGPT system. A mini-ridge filter (MRF) was developed to broaden the pristine Bragg-peak and, accordingly, decrease the number of required energy layers to obtain homogeneous irradiation. The applicator position was designed so that the fiducial marker's trajectory can be monitored by fluoroscopy during proton beam-delivery. The treatment plans for three lung cancer patients were made using the applicator, and four-dimensional (4D) dose calculations for the RGPT were performed using patient respiratory motion data. The effect of the MRF on the dose distributions and treatment time was evaluated. With the MRF, the number of energy layers was decreased to less than half of that needed without it, whereas the target volume coverage values (D99%, D95%, D50%, D2%) changed by less than 1% of the prescribed dose. Almost no dose distortion was observed after the 4D dose calculation, whereas the treatment time decreased by 26%-37%. Therefore, we conclude that the developed applicator compatible with RGPT is useful to solve the issue in the treatment of superficial moving tumors with SSPT.
  • Seishin Takao, Naoki Miyamoto, Taeko Matsuura, Rikiya Onimaru, Norio Katoh, Tetsuya Inoue, Kenneth Lee Sutherland, Ryusuke Suzuki, Hiroki Shirato, Shinichi Shimizu
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS 94 (1) 172 - 180 0360-3016 2016/01 [Refereed][Not invited]
     
    Purpose: To investigate the frequency and amplitude of baseline shift or drift (shift/drift) of lung tumors in stereotactic body radiation therapy (SBRT), using a real-time tumor-tracking radiation therapy (RTRT) system. Methods and Materials: Sixty-eight patients with peripheral lung tumors were treated with SBRT using the RTRT system. One of the fiducial markers implanted near the tumor was used for the real-time monitoring of the intrafractional tumor motion every 0.033 seconds by the RTRT system. When baseline shift/drift is determined by the system, the position of the treatment couch is adjusted to compensate for the shift/drift. Therefore, the changes in the couch position correspond to the baseline shift/drift in the tumor motion. The frequency and amount of adjustment to the couch positions in the left-right (LR), cranio-caudal (CC), and antero-posterior (AP) directions have been analyzed for 335 fractions administered to 68 patients. Results: The average change in position of the treatment couch during the treatment time was 0.45 +/- 2.23 mm (mean +/- standard deviation), -1.65 +/- 5.95 mm, and 1.50 +/- 2.54 mm in the LR, CC, and AP directions, respectively. Overall the baseline shift/drift occurs toward the cranial and posterior directions. The incidence of baseline shift/drift exceeding 3 mm was 6.0%, 15.5%, 14.0%, and 42.1% for the LR, CC, AP, and for the square-root of sum of 3 directions, respectively, within 10 minutes of the start of treatment, and 23.0%, 37.6%, 32.5%, and 71.6% within 30 minutes. Conclusions: Real-time monitoring and frequent adjustments of the couch position and/or adding appropriate margins are suggested to be essential to compensate for possible underdosages due to baseline shift/drift in SBRT for lung cancers. (C) 2016 Elsevier Inc. All rights reserved.
  • Dynamic image prediction using principle component and multi-channel singular spectral analysis: a feasibility study
    Ritu Bhusal Chhatkuli, Kazuyuki Demachi, Naoki Miyamoto, Mitsuru Uesaka, Akihiro Haga
    Open Journal of Medical Imaging 5 (3) 133 - 142 2015/09/09 [Refereed][Not invited]
  • Jun Kunimatsu, Naoki Miyamoto, Masayori Ishikawa, Hiroki Shirato, Masaki Tanaka
    Frontiers in Systems Neuroscience 9 (67) 1 - 10 1662-5137 2015/04/24 [Refereed][Not invited]
     
    Behavioral analysis of subjects with discrete brain lesions provides important information about the mechanisms of various brain functions. However, it is generally difficult to experimentally produce discrete lesions in deep brain structures. Here we show that a radiosurgical technique, which is used as an alternative treatment for brain tumors and vascular malformations, is applicable to create non-invasive lesions in experimental animals for the research in systems neuroscience. We delivered highly focused radiation (130–150 Gy at ISO center) to the frontal eye field (FEF) of macaque monkeys using a clinical linear accelerator (LINAC). The effects of irradiation were assessed by analyzing oculomotor performance along with magnetic resonance (MR) images before and up to 8 months following irradiation. In parallel with tissue edema indicated by MR images, deficits in saccadic and smooth pursuit eye movements were observed during several days following irradiation. Although initial signs of oculomotor deficits disappeared within a month, damage to the tissue and impaired eye movements gradually developed during the course of the subsequent 6 months. Postmortem histological examinations showed necrosis and hemorrhages within a large area of the white matter and, to a lesser extent, in the adjacent gray matter, which was centered at the irradiated target. These results indicated that the LINAC system was useful for making brain lesions in experimental animals, while the suitable radiation parameters to generate more focused lesions need to be further explored. We propose the use of a radiosurgical technique for establishing animal models of brain lesions, and discuss the possible uses of this technique for functional neurosurgical treatments in humans.
  • Masayori Ishikawa, Naomi Nagase, Taeko Matsuura, Junichi Hiratsuka, Ryusuke Suzuki, Naoki Miyamoto, Kenneth Lee Sutherland, Katsuhisa Fujita, Hiroki Shirato
    JOURNAL OF RADIATION RESEARCH 56 (2) 372 - 381 0449-3060 2015/03 [Refereed][Not invited]
     
    The scintillator with optical fiber (SOF) dosimeter consists of a miniature scintillator mounted on the tip of an optical fiber. The scintillator of the current SOF dosimeter is a 1-mm diameter hemisphere. For a scintillation dosimeter coupled with an optical fiber, measurement accuracy is influenced by signals due to Cerenkov radiation in the optical fiber. We have implemented a spectral filtering technique for compensating for the Cerenkov radiation effect specifically for our plastic scintillator-based dosimeter, using a wavelength-separated counting method. A dichroic mirror was used for separating input light signals. Individual signal counting was performed for high-and low-wavelength light signals. To confirm the accuracy, measurements with various amounts of Cerenkov radiation were performed by changing the incident direction while keeping the Ir-192 source-to-dosimeter distance constant, resulting in a fluctuation of <5%. Optical fiber bending was also addressed; no bending effect was observed for our wavelength-separated SOF dosimeter.
  • Hirata, Yuichi, Miyamoto, Naoki, Shimizu, Morihito, Yoshida, Mitsuhiro, Hiramoto, Kazuo, Ichikawa, Yoshiaki, Kaneko, Shuji, Sasagawa, Tsuyoshi, Hiraoka, Masahiro, Shirato, Hiroki
    Synthesiology English edition 国立研究開発法人 産業技術総合研究所 7 (4) 229 - 238 1883-0978 2015 [Refereed][Not invited]
     
    In radiation therapy for cancer, there are possibilities of position changes of the affected area during irradiation due to respiration of a patient. In order to enhance effects of irradiation for the affected area and minimize damages to the surrounding normal tissues, four dimensional radiotherapy (4DRT), which can take into account time variation of the three-dimensional position of the affected area, has been recently developed, and has been achieving significant therapeutic effects. We have proposed the International Electrotechnical Commission (IEC) standards including technical requirements of the safety aspects of the systems which realize this 4DRT, taking into account the time aspect. The reason for the proposal is that international standardization will be very effective to ensure safety of 4DRT, and international standards of IEC will have compelling force if regulatory agencies refer to them. The purpose of this paper is to summarize the analysis of the strategy in a precedent endeavor toward international standardization of the 4DRT systems, for which demands are increasing. The main point of the strategy is forming an international consensus by bringing together the opinions of specialists from various fields from a clinical point of view, focusing on the international standardization of the technical requirements of the safety aspects of the 4DRT. Based on such a strategy, we will promote developing new standards by evaluating the overall safety of the 4DRT systems for further expanding use, in addition to updating existing standards of particular equipment which constitute the 4DRT systems.
  • Naoki Miyamoto, Masayori Ishikawa, Kenneth Sutherland, Ryusuke Suzuki, Taeko Matsuura, Chie Toramatsu, Seishin Takao, Hideaki Nihongi, Shinichi Shimizu, Kikuo Umegaki, Hiroki Shirato
    JOURNAL OF RADIATION RESEARCH 56 (1) 186 - 196 0449-3060 2015/01 [Refereed][Not invited]
     
    In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within +/- 2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction.
  • S. Shimizu, T. Matsuura, M. Umezawa, K. Hiramoto, N. Miyamoto, K. Umegaki, H. Shirato
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS 30 (5) 555 - 558 1120-1797 2014/07 [Refereed][Not invited]
     
    Purpose: Spot-scanning proton beam therapy (PBT) can create good dose distribution for static targets. However, there exists larger uncertainty for tumors that move due to respiration, bowel gas or other internal circumstances within the patients. We have developed a real-time tumor-tracking radiation therapy (RTRT) system that uses an X-ray linear accelerator gated to the motion of internal fiducial markers introduced in the late 1990s. Relying on more than 10 years of clinical experience and big log data, we established a real-time image gated proton beam therapy system dedicated to spot scanning. Materials and methods: Using log data and clinical outcomes derived from the clinical usage of the RTRT system since 1999, we have established a library to be used for in-house simulation for tumor targeting and evaluation. Factors considered to be the dominant causes of the interplay effects related to the spot scanning dedicated proton therapy system are listed and discussed. Results/conclusions: Total facility design, synchrotron operation cycle, and gating windows were listed as the important factors causing the interplay effects contributing to the irradiation time and motion-induced dose error. Fiducial markers that we have developed and used for the RTRT in X-ray therapy were suggested to have the capacity to improve dose distribution. Accumulated internal motion data in the RTRT system enable us to improve the operation and function of a Spot-scanning proton beam therapy (SSPT) system. A real-time-image gated SSPT system can increase accuracy for treating moving tumors. The system will start clinical service in early 2014. (C) 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
  • Shinichi Shimizu, Naoki Miyamoto, Taeko Matsuura, Yusuke Fujii, Masumi Umezawa, Kikuo Umegaki, Kazuo Hiramoto, Hiroki Shirato
    PLOS ONE 9 (4) 1932-6203 2014/04 [Refereed][Not invited]
     
    Purpose: A proton beam therapy (PBT) system has been designed which dedicates to spot-scanning and has a gating function employing the fluoroscopy-based real-time-imaging of internal fiducial markers near tumors. The dose distribution and treatment time of the newly designed real-time-image gated, spot-scanning proton beam therapy (RGPT) were compared with free-breathing spot-scanning proton beam therapy (FBPT) in a simulation. Materials and Methods: In-house simulation tools and treatment planning system VQA (Hitachi, Ltd., Japan) were used for estimating the dose distribution and treatment time. Simulations were performed for 48 motion parameters (including 8 respiratory patterns and 6 initial breathing timings) on CT data from two patients, A and B, with hepatocellular carcinoma and with clinical target volumes 14.6 cc and 63.1 cc. The respiratory patterns were derived from the actual trajectory of internal fiducial markers taken in X-ray real-time tumor-tracking radiotherapy (RTRT). Results: With FBPT, 9/48 motion parameters achieved the criteria of successful delivery for patient A and 0/48 for B. With RGPT 48/48 and 42/48 achieved the criteria. Compared with FBPT, the mean liver dose was smaller with RGPT with statistical significance (p<0.001); it decreased from 27% to 13% and 28% to 23% of the prescribed doses for patients A and B, respectively. The relative lengthening of treatment time to administer 3 Gy (RBE) was estimated to be 1.22 (RGPT/FBPT: 138 s/113 s) and 1.72 (207 s/120 s) for patients A and B, respectively. Conclusions: This simulation study demonstrated that the RGPT was able to improve the dose distribution markedly for moving tumors without very large treatment time extension. The proton beam therapy system dedicated to spot-scanning with a gating function for real-time imaging increases accuracy with moving tumors and reduces the physical size, and subsequently the cost of the equipment as well as of the building housing the equipment.
  • 宮本直樹, 石川正純, 井上哲也, 加藤徳雄, 清水伸一, 鬼丸力也, 白土博樹
    Rad Fan (株)メディカルアイ 12 (3) 70-73,20 - 73 1348-3498 2014/02/25 [Not refereed][Not invited]
     
    RTRTは、X線透視装置と治療装置を組み合わせた治療システムにより、体内マーカーを利用した待ち伏せ照射をすることで、呼吸性移動対策を実現している。これまでの長きにわたり、臨床的な成績はもちろん、呼吸性移動に関する様々な知見が得られた。また、昨春に次世代型のRTRTシステムがリリースされ、今後のさらなる発展と普及が期待される。(著者抄録)
  • HIRATA Yuichi, SHIRATO Hiroki, MIYAMOTO Naoki, SHIMIZU Morihito, YOSHIDA Mitsuhiro, HIRAMOTO Kazuo, ICHIKAWA Yoshiaki, KANEKO Shuji, SASAGAWA Tsuyoshi, HIRAOKA Masahiro
    Synthesiology 国立研究開発法人 産業技術総合研究所 7 (4) 238 - 246 1882-6229 2014 [Refereed][Not invited]
     
    In radiation therapy for cancer, there are possibilities of changing of positions of the affected area during irradiation due to respiration of a patient. In order to enhance effects of irradiation for the affected area and minimize damages to the surrounding normal tissues, four dimensional radiotherapy (4DRT), which can take into account time variation of the three-dimensional position of the affected area, has been recently developed, and has been achieving significant therapeutic effect. We have proposed the International Electrotechnical Commission (IEC) standards including technical requirements of the safety aspects of the systems which realize this 4DRT, taking into account the time variation. The reason for the proposal is that international standardization will be very effective to ensure safety of 4DRT, and international standards of IEC will have compelling force if regulatory agencies refer to them. The purpose of this paper is to summarize the analysis of the strategy in a precedent endeavor toward international standardization of the 4DRT systems, for which demands are increasing. The main point of the strategy is forming an international consensus by bringing together the opinions of specialists from various fields from a clinical point of view, focusing on the international standardization of the technical requirements of the safety aspects of the 4DRT. Based on such a strategy, we will promote developing new standards by evaluating the overall safety of the 4DRT systems for further expanding use, in addition to updating existing standards of particular equipment which constitute the 4DRT systems.
  • Nishioka K, Shimizu S, Shinohara N, Ito Y. M, Abe T, Maruyama S, Kinoshita R, Harada K, Nishikawa N, Miyamoto N, Onimaru R, Shirato H
    Jpn J Clin Oncol 44 (1) 28 - 35 1465-3621 2014 [Refereed][Not invited]
  • Kentaro Nishioka, Shinichi Shimizu, Nobuo Shinohara, Yoichi M. Ito, Takashige Abe, Satoru Maruyama, Rumiko Kinoshita, Keiichi Harada, Noboru Nishikawa, Naoki Miyamoto, Rikiya Onimaru, Hiroki Shirato
    JAPANESE JOURNAL OF CLINICAL ONCOLOGY 44 (1) 28 - 35 0368-2811 2014/01 [Refereed][Not invited]
     
    The real-time tumor-tracking radiotherapy system with fiducial markers has the advantage that it can be used to verify the localization of the markers during radiation delivery in real-time. We conducted a prospective Phase II study of image-guided local-boost radiotherapy for locally advanced bladder cancer using a real-time tumor-tracking radiotherapy system for positioning, and here we report the results regarding the safety and efficacy of the technique. Twenty patients with a T2-T4N0M0 urothelial carcinoma of the bladder who were clinically inoperable or refused surgery were enrolled. Transurethral tumor resection and 40 Gy irradiation to the whole bladder was followed by the transurethral endoscopic implantation of gold markers in the bladder wall around the primary tumor. A boost of 25 Gy in 10 fractions was made to the primary tumor while maintaining the displacement from the planned position at less than 2 mm during radiation delivery using a real-time tumor-tracking radiotherapy system. The toxicity, local control and survival were evaluated. Among the 20 patients, 14 were treated with concurrent chemoradiotherapy. The median follow-up period was 55.5 months. Urethral and bowel late toxicity (Grade 3) were each observed in one patient. The local-control rate, overall survival and cause-specific survival with the native bladder after 5 years were 64, 61 and 65. Image-guided local-boost radiotherapy using a real-time tumor-tracking radiotherapy system can be safely accomplished, and the clinical outcome is encouraging. A larger prospective multi-institutional study is warranted for more precise evaluations of the technological efficacy and patients quality of life.
  • 白土博樹, 鬼丸力也, 清水伸一, 石川正純, 宮本直樹, SUTHERLAND Ken, 鈴木隆介, 寅松千枝
    映像情報Medical 45 (7) 619 - 623 1346-1354 2013/07/01 [Not refereed][Not invited]
  • Taeko Matsuura, Naoki Miyamoto, Shinichi Shimizu, Yusuke Fujii, Masumi Umezawa, Seishin Takao, Hideaki Nihongi, Chie Toramatsu, Kenneth Sutherland, Ryusuke Suzuki, Masayori Ishikawa, Rumiko Kinoshita, Kenichiro Maeda, Kikuo Umegaki, Hiroki Shirato
    MEDICAL PHYSICS 40 (7) 071729-11 - 071729-1 0094-2405 2013/07 [Refereed][Not invited]
     
    Purpose: In spot-scanning proton therapy, the interplay effect between tumor motion and beam delivery leads to deterioration of the dose distribution. To mitigate the impact of tumor motion, gating in combination with repainting is one of the most promising methods that have been proposed. This study focused on a synchrotron-based spot-scanning proton therapy system integrated with real-time tumor monitoring. The authors investigated the effectiveness of gating in terms of both the delivered dose distribution and irradiation time by conducting simulations with patients' motion data. The clinically acceptable range of adjustable irradiation control parameters was explored. Also, the relation between the dose error and the characteristics of tumor motion was investigated. Methods: A simulation study was performed using a water phantom. A gated proton beam was irradiated to a clinical target volume (CTV) of 5 x 5 x 5 cm(3), in synchronization with lung cancer patients' tumor trajectory data. With varying parameters of gate width, spot spacing, and delivered dose per spot at one time, both dose uniformity and irradiation time were calculated for 397 tumor trajectory data from 78 patients. In addition, the authors placed an energy absorber upstream of the phantom and varied the thickness to examine the effect of changing the size of the Bragg peak and the number of required energy layers. The parameters with which 95% of the tumor trajectory data fulfill our defined criteria were accepted. Next, correlation coefficients were calculated between the maximum dose error and the tumor motion characteristics that were extracted from the tumor trajectory data. Results: With the assumed CTV, the largest percentage of the data fulfilled the criteria when the gate width was +/- 2 mm. Larger spot spacing was preferred because it increased the number of paintings. With a prescribed dose of 2 Gy, it was difficult to fulfill the criteria for the target with a very small effective depth (the sum of an assumed energy absorber's thickness and the target depth in the phantom) because of the sharpness of the Bragg peak. However, even shallow targets could be successfully irradiated by employing an adequate number of paintings and by placing an energy absorber of sufficient thickness to make the effective target depth more than 12 cm. The authors also observed that motion in the beam direction was the main cause of dose distortion, followed by motion in the lateral plane perpendicular to the scan direction. Conclusions: The results suggested that by properly adjusting irradiation control parameters, gated proton spot-scanning beam therapy can be robust to target motion. This is an important first step toward establishing treatment plans in real patient geometry. (C) 2013 American Association of Physicists in Medicine.
  • Chie Toramatsu, Norio Katoh, Shinichi Shimizu, Hideaki Nihongi, Taeko Matsuura, Seishin Takao, Naoki Miyamoto, Ryusuke Suzuki, Kenneth Sutherland, Rumiko Kinoshita, Rikiya Onimaru, Masayori Ishikawa, Kikuo Umegaki, Hiroki Shirato
    RADIATION ONCOLOGY 8 (48) 1748-717X 2013/03 [Refereed][Not invited]
     
    Background: We performed a dosimetric comparison of spot-scanning proton therapy (SSPT) and intensity-modulated radiation therapy (IMRT) for hepatocellular carcinoma (HCC) to investigate the impact of tumor size on the risk of radiation induced liver disease (RILD). Methods: A number of alternative plans were generated for 10 patients with HCC. The gross tumor volumes (GTV) varied from 20.1 to 2194.5 cm(3). Assuming all GTVs were spherical, the nominal diameter was calculated and ranged from 3.4 to 16.1 cm. The prescription dose was 60 Gy for IMRT or 60 cobalt Gy-equivalents for SSPT with 95% planning target volume (PTV) coverage. Using IMRT and SSPT techniques, extensive comparative planning was conducted. All plans were evaluated by the risk of RILD estimated using the Lyman-normal-tissue complication probability model. Results: For IMRT the risk of RILD increased drastically between 6.3-7.8 cm nominal diameter of GTV. When the nominal diameter of GTV was more than 6.3 cm, the average risk of RILD was 94.5% for IMRT and 6.2% for SSPT. Conclusions: Regarding the risk of RILD, HCC can be more safely treated with SSPT, especially if its nominal diameter is more than 6.3 cm.
  • Harada K, Katoh N, Suzuki R, Inoue T, Omimaru R, Shimizu S, Miyamoto N, Ishikawa M, Shirato H
    International Journal of Radiation Oncology Biology Physics 87 (2) S67  0360-3016 2013 [Refereed][Not invited]
  • Takao S, Miyamoto N, Matsuura T, Shimizu S, Onimaru R, Katoh N, Inoue T, Shirato H
    International Journal of Radiation Oncology Biology Physics 87 (2) S67  0360-3016 2013 [Refereed][Not invited]
  • 宮本直樹, 石川正純, SUTHERLAND Kenneth, 鈴木隆介, 松浦妙子, 高尾聖心, 寅松千枝, 二本木英明, 清水伸一, 梅垣菊男, 白土博樹
    医学物理 Supplement 32 (3) 281 - 282 1345-5362 2012/09/13 [Not refereed][Not invited]
  • 大友可奈子, 宮本直樹, SUTHERLAND Kenneth, 鈴木隆介, 松浦妙子, 鬼丸力也, 清水伸一, 梅垣菊男, 白土博樹, 石川正純
    医学物理 Supplement 32 (3) 155 - 156 1345-5362 2012/09/13 [Not refereed][Not invited]
  • 前田憲一郎, 松浦妙子, 高尾聖心, SUTHERLAND Kenneth, 寅松千枝, 二本木英明, 宮本直樹, 石川正純, 清水伸一, 梅垣菊男, 白土博樹
    医学物理 Supplement 32 (3) 101 - 102 1345-5362 2012/09/13 [Not refereed][Not invited]
  • 高尾聖心, 松浦妙子, 寅松千枝, 二本木英明, 宮本直樹, 清水伸一, 木下留美子, 松田浩二, 木谷貴雄, 梅垣菊男, 白土博樹
    医学物理 Supplement 32 (3) 169 - 170 1345-5362 2012/09/13 [Not refereed][Not invited]
  • Taeko Matsuura, Kenichiro Maeda, Kenneth Sutherland, Taisuke Takayanagi, Shinichi Shimizu, Seishin Takao, Naoki Miyamoto, Hideaki Nihongi, Chie Toramatsu, Yoshihiko Nagamine, Rintaro Fujimoto, Ryusuke Suzuki, Masayori Ishikawa, Kikuo Umegaki, Hiroki Shirato
    MEDICAL PHYSICS 39 (9) 5584 - 5591 0094-2405 2012/09 [Refereed][Not invited]
     
    Purpose: In accurate proton spot-scanning therapy, continuous target tracking by fluoroscopic x ray during irradiation is beneficial not only for respiratory moving tumors of lung and liver but also for relatively stationary tumors of prostate. Implanted gold markers have been used with great effect for positioning the target volume by a fluoroscopy, especially for the cases of liver and prostate with the targets surrounded by water-equivalent tissues. However, recent studies have revealed that gold markers can cause a significant underdose in proton therapy. This paper focuses on prostate cancer and explores the possibility that multiple-field irradiation improves the underdose effect by markers on tumor-control probability (TCP). Methods: A Monte Carlo simulation was performed to evaluate the dose distortion effect. A spherical gold marker was placed at several characteristic points in a water phantom. The markers were with two different diameters of 2 and 1.5 mm, both visible on fluoroscopy. Three beam arrangements of single-field uniform dose (SFUD) were examined: one lateral field, two opposite lateral fields, and three fields (two opposite lateral fields + anterior field). The relative biological effectiveness (RBE) was set to 1.1 and a dose of 74 Gy (RBE) was delivered to the target of a typical prostate size in 37 fractions. The ratios of TCP to that without the marker (TCPr) were compared with the parameters of the marker sizes, number of fields, and marker positions. To take into account the dependence of biological parameters in TCP model, alpha/beta values of 1.5, 3, and 10 Gy (RBE) were considered. Results: It was found that the marker of 1.5 mm diameter does not affect the TCPs with all alpha/beta values when two or more fields are used. On the other hand, if the marker diameter is 2 mm, more than two irradiation fields are required to suppress the decrease in TCP from TCPr by less than 3%. This is especially true when multiple (two or three) markers are used for alignment of a patient. Conclusions: It is recommended that 1.5-mm markers be used to avoid the reduction of TCP as well as to spare the surrounding critical organs, as long as the markers are visible on x-ray fluoroscopy. When 2-mm markers are implanted, more than two fields should be used and the markers should not be placed close to the distal edge of any of the beams. (c) 2012 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4745558]
  • 二本木英明, 寅松千枝, 松浦妙子, 高尾聖心, 宮本直樹, 梅垣菊男, 清水伸一, 木下留美子, 白土博樹
    医学物理 Supplement 32 (1) 190  1345-5362 2012/04/01 [Not refereed][Not invited]
  • Naoki Miyamoto, Kenneth Sutherland, Ryusuke Suzuki, Taeko Matsuura, Chie Toramatsu, Seishin Takao, Hideaki Nihongi, Rumiko Kinoshita, Shinichi Shimizu, Rikiya Onimaru, Kikuo Umegaki, Hiroki Shirato, Masayori Ishikawa
    Progress in Biomedical Optics and Imaging - Proceedings of SPIE 8316 1605-7422 2012 [Refereed][Not invited]
     
    In the real-time tumor-tracking radiotherapy (RTRT) system, the fiducial markers are inserted in or near the target tumor in order monitor the respiratory-induced motion of tumors. During radiation treatment, the markers are detected by continuous fluoroscopy operated at 30 frames/sec. The marker position is determined by means of a template pattern matching technique which is based on the normalized cross correlation. With high tube voltage, large current and long exposure, the fiducial marker will be recognized accurately, however, the radiation dose due to X-ray fluoroscopy increases. On the other hand, by decreasing the fluoroscopy parameter settings, the fiducial marker could be lost because the effect of statistical noise is increased. In the respiratory-gated radiotherapy, the error of the image guidance will induce the reduction of the irradiation efficiency and accuracy. In order to track the marker stably and accurately in low dose fluoroscopy, we propose the application of a recursive filter. The effectiveness of the image processing is investigated by tracking the static marker and the dynamic marker. The results suggest that the stability and the accuracy of the marker tracking can be improved by applying the recursive image filter in low dose imaging. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
  • Toramatsu C, Katoh N, Shimizu S, Nihongi H, Matsuura T, Takao S, Miyamoto N, Kinoshita R, Umegaki K, Shirato H
    International Journal of Radiation Oncology Biology Physics 84 (3) S327 - S328 0360-3016 2012 [Refereed][Not invited]
  • Naoki Miyamoto, Kenneth Sutherland, Ryusuke Suzuki, Taeko Matsuura, Chie Toramatsu, Seishin Takao, Hideaki Nihongi, Rumiko Kinoshita, Shinichi Shimizu, Rikiya Onimaru, Kikuo Umegaki, Hiroki Shirato, Masayori Ishikawa
    MEDICAL IMAGING 2012: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING 8316 0277-786X 2012 [Not refereed][Not invited]
     
    In the real-time tumor-tracking radiotherapy (RTRT) system, the fiducial markers are inserted in or near the target tumor in order monitor the respiratory-induced motion of tumors. During radiation treatment, the markers are detected by continuous fluoroscopy operated at 30 frames/sec. The marker position is determined by means of a template pattern matching technique which is based on the normalized cross correlation. With high tube voltage, large current and long exposure, the fiducial marker will be recognized accurately, however, the radiation dose due to X-ray fluoroscopy increases. On the other hand, by decreasing the fluoroscopy parameter settings, the fiducial marker could be lost because the effect of statistical noise is increased. In the respiratory-gated radiotherapy, the error of the image guidance will induce the reduction of the irradiation efficiency and accuracy. In order to track the marker stably and accurately in low dose fluoroscopy, we propose the application of a recursive filter. The effectiveness of the image processing is investigated by tracking the static marker and the dynamic marker. The results suggest that the stability and the accuracy of the marker tracking can be improved by applying the recursive image filter in low dose imaging.
  • Naoki Miyamoto, Masayori Ishikawa, Gerard Bengua, Kenneth Sutherland, Ryusuke Suzuki, Suguru Kimura, Shinichi Shimizu, Rikiya Onimaru, Hiroki Shirato
    PHYSICS IN MEDICINE AND BIOLOGY 56 (15) 4803 - 4813 0031-9155 2011/08 [Refereed][Not invited]
     
    In the real-time tumor-tracking radiotherapy system, fluoroscopy is used to determine the real-time position of internal fiducial markers. The pattern recognition score (PRS) ranging from 0 to 100 is computed by a template pattern matching technique in order to determine the marker position on the fluoroscopic image. The PRS depends on the quality of the fluoroscopic image. However, the fluoroscopy parameters such as tube voltage, current and exposure duration are selected manually and empirically in the clinical situation. This may result in an unnecessary imaging dose from the fluoroscopy or loss of the marker because of too much or insufficient x-ray exposure. In this study, a novel optimization method is proposed in order to minimize the fluoroscopic dose while keeping the image quality usable for marker tracking. The PRS can be predicted in a region where the marker appears to move in the fluoroscopic image by the proposed method. The predicted PRS can be utilized to judge whether the marker can be tracked with accuracy. In this paper, experiments were performed to show the feasibility of the PRS prediction method under various conditions. The predicted PRS showed good agreement with the measured PRS. The root mean square error between the predicted PRS and the measured PRS was within 1.44. An experiment using a motion controller and an anthropomorphic chest phantom was also performed in order to imitate a clinical fluoroscopy situation. The result shows that the proposed prediction method is expected to be applicable in a real clinical situation.
  • Satoshi Yamaguchi, Masayori Ishikawa, Gerard Bengua, Kenneth Sutherland, Teiji Nishio, Satoshi Tanabe, Naoki Miyamoto, Ryusuke Suzuki, Hiroki Shirato
    PHYSICS IN MEDICINE AND BIOLOGY 56 (4) 965 - 977 0031-9155 2011/02 [Refereed][Not invited]
     
    A feasibility study of a novel PET-based molecular image guided radiation therapy (m-IGRT) system was conducted by comparing PET-based digitally reconstructed planar image (PDRI) registration with radiographic registration. We selected a pair of opposing parallel-plane PET systems for the practical implementation of this system. Planar images along the in-plane and cross-plane directions were reconstructed from the parallel-plane PET data. The in-plane and cross-plane FWHM of the profile of 2 mm diameter sources was approximately 1.8 and 8.1 mm, respectively. Therefore, only the reconstructed in-plane image from the parallel-plane PET data was used in the PDRI registration. In the image registration, five different sizes of (18)F cylindrical sources (diameter: 8, 12, 16, 24, 32 mm) were used to determine setup errors. The data acquisition times were 1, 3 and 5 min. Image registration was performed by five observers to determine the setup errors from PDRI registration and radiographic registration. The majority of the mean registration errors obtained from the PDRI registration were not significantly different from those obtained from the radiographic registration. Acquisition time did not appear to result in significant differences in the mean registration error. The mean registration error for the PDRI registration was found to be 0.93 +/- 0.33 mm. This is not statistically different from the radiographic registration which had a mean registration error of 0.92 +/- 0.27 mm. Our results suggest that m-IGRT image registration using PET-based reconstructed planar images along the in-plane direction is feasible for clinical use if PDRI registration is performed at two orthogonal gantry angles.
  • Satoshi Tomioka, Samia Heshmat, Naoki Miyamoto, Shusuke Nishiyama
    APPLIED OPTICS 49 (25) 4735 - 4745 1559-128X 2010/09 [Refereed][Not invited]
     
    In the process of phase unwrapping for an image obtained by an interferometer or in-line holography, noisy image data may pose difficulties. Traditional phase unwrapping algorithms used to estimate a two-dimensional phase distribution include much estimation error, due to the effect of singular points. This paper introduces an accurate phase-unwrapping algorithm based on three techniques: a rotational compensator, unconstrained singular point positioning, and virtual singular points. The new algorithm can confine the effect of singularities to the local region around each singular point. The phase-unwrapped result demonstrates that accuracy is improved, compared with past methods based on the least-squares approach. (c) 2010 Optical Society of America
  • 関原和正, 石川正純, SUTHERLAND Kenneth, BENGUA Gerard, 宮本直樹, 鈴木隆介, 清水伸一, 白土博樹
    Jpn J Radiol (公社)日本医学放射線学会 28 (Supplement 1) 15 - 15 1867-1071 2010/07/25 [Not refereed][Not invited]
  • YASUDA KOICHI, HASEGAWA MASAICHI, ONIMARU RIKIYA, KINOSHITA RUMIKO, KATO NORIO, TAGUCHI HIROSHI, SHIMIZU SHIN'ICHI, INOUE TETSUYA, ONODERA SHUNSUKE, MIZOGUCHI FUMIKI, AOYAMA HIDEFUMI, SHIRATO HIROKI, SHIGA SATORU, OKAMOTO SHOZO, TAMAKI NAGARA, ISHIKAWA MASAZUMI, SUTHERLAND KENNETH, BENGUA GERARD, MIYAMOTO NAOKI, SUZUKI TAKASUKE
    Jpn J Radiol (公社)日本医学放射線学会 28 (Supplement 1) 14 - 14 1867-1071 2010/07/25 [Not refereed][Not invited]
  • Satoshi Tomioka, Samia Heshmat, Naoki Miyamoto, Shusuke Nishiyama
    Applied Optics 49 (25) 4735  0003-6935 2010 [Refereed][Not invited]
  • 木村傑, 宮本直樹, 石川正純, SUTHERLAND Kenneth, BENGUA Gerard, 鈴木隆介, 清水伸一, 青山英史, 鬼丸力也, 白土博樹
    医学物理 Supplement 29 (3) 148-149  1345-5362 2009/09 [Not refereed][Not invited]
  • 宮本直樹, SUTHERLAND Kenneth, 石川正純, 鈴木隆介, BENGUA Gerard, 木村傑, 清水伸一, 青山英史, 鬼丸力也, 白土博樹
    医学物理 Supplement 29 (3) 150-151  1345-5362 2009/09 [Not refereed][Not invited]
  • 石川正純, サザランド ケネス, ベングア ジェラード, 鈴木隆介, 宮本直樹, 加藤徳雄, 清水伸一, 鬼丸力也, 青山英史, 白土博樹
    日本放射線腫よう学会誌 21 (Supplement 1) 158  1040-9564 2009/08/19 [Not refereed][Not invited]
  • T. Kamiyama, N. Miyamoto, S. Tomioka, T. Kozaki
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 605 (1-2) 91 - 94 0168-9002 2009/06 [Refereed][Not invited]
     
    Neutron resonance absorption spectroscopy (N-RAS) with a pulsed neutron source can distinguish the dynamics of individual nuclides having resonance peaks on epithermal neutron region. The analyzed internal information of nuclide presence and its effective temperature can be reconstructed as distributions over the object cross-section using computed tomography (CT). Because some of the resonance absorption cross-sections have very large values, N-RAS could match the small neutron pulsed source by its high sensitivity. In this study, we have constructed a new instrument of N-RAS on a compact electron linac neutron source. Resonance absorption measurements and CT imaging with the instrument have succeeded for some kinds of nuclide. (C) 2009 Elsevier B.V. All rights reserved.
  • 棚邊哲史, 石川正純, 山口哲, 武島嗣英, 鈴木隆介, 宮本直樹, 加藤徳雄, 清水伸一, 鬼丸力也, 白土博樹
    医学物理 Supplement 29 (2) 101-102  1345-5362 2009/04 [Not refereed][Not invited]
  • 宮本直樹, SUTHERLAND Kenneth, 石川正純, 鈴木隆介, BENGUA Gerard, 木村傑, 清水伸一, 青山英史, 鬼丸力也, 白土博樹
    医学物理 Supplement 29 (2) 192-193  1345-5362 2009/04 [Not refereed][Not invited]
  • 木村傑, 石川正純, SUTHERLAND Kenneth, 宮本直樹, BENGUA Gerard, 鈴木隆介, 清水伸一, 青山英史, 鬼丸力也, 白土博樹
    医学物理 Supplement 29 (2) 196-197  1345-5362 2009/04 [Not refereed][Not invited]
  • 石川正純, SUTHERLAND Kenneth, 宮本直樹, BENGUA Gerard, 清水伸一, 青山英史, 鬼丸力也, 木村傑, 白土博樹
    医学物理 Supplement 29 (2) 194-195  1345-5362 2009/04 [Not refereed][Not invited]
  • Takashi Kamiyama, Hirotaka Sato, Naoki Miyamoto, Hirokatsu Iwasa, Yoshiaki Kiyanagi, Susumu Ikeda
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 600 (1) 107 - 110 0168-9002 2009/02/21 [Refereed][Not invited]
     
    Neutron tomography was studied using a neutron resonance absorption spectrometer installed on a pulsed neutron source. The neutron resonance absorption spectroscopy (N-RAS) is a method to study the dynamics of nuclides by analyzing the Doppler broadening of their resonance spectra. N-RAS can combine with the computer tomography (CT) technique to obtain the tomogram of an object. We developed the CT reconstructions which were repeated at each time-of-flight (TOF) channel and piled up the reconstructed images in order to make the resonance spectrum over the wide energy range. Finally, we could deduce the information of nuclides and its temperature distributions in the sample non-destructively. We call this new TOF tomography technique as neutron resonance imaging (NRI). © 2008 Elsevier B.V. All rights reserved.
  • Takashi Kamiyama, Naoki Miyamoto, Satoshi Tomioka, Tamotsu Kozaki
    IEEE Nuclear Science Symposium Conference Record 1266 - 1270 1095-7863 2009 [Refereed][Not invited]
     
    Neutron resonance absorption spectroscopy (N-RAS) with a pulsed neutron source can distinguish the dynamics of individual nuclides which have neutron resonance peaks on epithermal neutron region. Because some of the resonance absorption cross sections have very large values, N-RAS could match the small neutron pulse source by its high sensitivity. The analyzed spectra information of nuclide presence and its effective temperature can be reconstructed as distributions over the object cross-section using computer tomography (CT). In this study the projected nuclide densities were obtained from the resonance absorption equation fitting with the series of obtained spectra. Then, we reconstructed the quantitative nuclide density tomogram using the CT technique about them. ©2009 IEEE.
  • T. Kamiyama, N. Miyamoto, S. Tomioka, T. Kozaki
    2009 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) 1266 - 1270 1082-3654 2009 [Not refereed][Not invited]
  • Ishikawa M, Sutherland KL, Bengua G, Suzuki R, Miyamoto N, Katoh N, Shimizu S, Onimaru R, Aoyama H, Shirato
    International Journal of Radiation Oncology Biology Physics 75 (3) S590 - S591 0360-3016 2009 [Refereed][Not invited]
  • Naoki Miyamoto, Shusuke Nisiyama, Satoshi Tomioka, Takeaki Enoto
    OPTICS COMMUNICATIONS 272 (1) 67 - 72 0030-4018 2007/04 [Refereed][Not invited]
     
    We utilize nitroanisole, that absorbs infrared (IR) radiation as heat, as an optical modulation device based on a thermal process. The nitroanisole exhibits a thermal lens effect, i.e. a temperature dependent refractive index. Hence, the nitroanisole can induce phase modulation to visible light, in direct response to intensity of the incident IR radiation. The proposed method can be used to obtain the phase modulation distribution that corresponds to the IR intensity distribution, i.e. the IR hologram itself, on the nitroanisole by examining the phase map of visible light that is modulated upon passing through the nitroanisole. The IR wavefront can be reconstructed by calculating extracted IR holograms through the Fresnel transform. It is verified that both the amplitude and the phase of the IR wavefront can be reconstructed accurately by proposed method. (c) 2006 Elsevier B.V. All rights reserved.
  • T. Kamiyama, H. Sato, N. Miyamoto, H. Iwasa, Y. Kiyanagi, S. Ikeda
    IEEE Nuclear Science Symposium Conference Record 2 1720 - 1724 1095-7863 2007 [Refereed][Not invited]
     
    Neutron tomography was studied using the neutron resonance absorption spectrometer installed on the pulsed neutron source. The neutron resonance absorption spectroscopy (N-RAS) is a method to study the dynamics of nuclides by analyzing the Doppler broadening of their resonance spectra. N-RAS can combine with the computer tomography (CT) technique to obtain the cross sectional image of the sample. We develop the method as detailed analysis of time-of flight (TOF) resonance absorption spectra. The CT reconstructions are repeated at each TOF channel and pile up the reconstructed images in order to make the resonance spectrum over the wide energy range. Finally, we can deduce the information of nuclides and its temperature distributions in the sample non-destructively. We call this new technique as neutron resonance imaging (NRI). © 2007 IEEE.
  • Study of Neutron Tomography using Neutron Resonance Absorption
    T. Kamiyama, H. Sato, N. Miyamoto, H. Iwasa, Y. Kiyanagi, S. Ikeda
    Proceedings of 18th Meeting of the International Collaboration on Advanced Neutron Sources (ICANS-XVIII) 2007 [Not refereed][Not invited]
  • T. Kamiyama, H. Sato, N. Miyamoto, H. Iwasa, Y. Kiyanagi, S. Ikeda
    2007 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) 1720 - 1725 1082-3654 2007/01 [Not refereed][Not invited]
  • N Miyamoto, S Nisiyama, S Tomioka, T Enoto
    OPTICS COMMUNICATIONS 260 (1) 25 - 29 0030-4018 2006/04 [Refereed][Not invited]
     
    We propose the application of nitroanisole as a detector for middle infrared (mid-IR) interferometry or holography. The present experiment utilizes the liquid form of nitroanisole, which has a thermal lens effect. i.e. a temperature dependent refractive index. Since the nitroanisole absorbs IR radiation as heat, it is possible to estimate the IR intensity distribution on the nitroanisole from the diffraction pattern made by visible laser light that is transmitted through the nitroanisole. In this study, the time resolution and the diffraction efficiency of the nitroanisole was measured under various conditions. The experimental results show that the nitroanisole has a time resolution as high as that of a standard video camera, as well as a high diffraction efficiency and the spatial resolution equivalent to that of a conventional IR camera. Furthermore, we confirmed that the phase shift in mid-IR region can be estimated by analyzing the change in the visible diffraction pattern. (c) 2005 Elsevier B.V. All rights reserved.
  • Naoki Miyamoto, Shusuke Nisiyama, Satoshi Tomioka, Takeaki Enoto
    Proceedings of SPIE - The International Society for Optical Engineering 6049 202 - 211 0277-786X 2005 [Not refereed][Not invited]
     
    We propose the application of nitroanisole as a two-dimensional detector for infrared (IR) phase-shifting interferometry. The nitroanisole that is utilized in our experiment is liquid at room temperature and it has significant thermal lens effect, i.e. the refractive index for visible light is dependent on temperature. In addition, we verified by infrared absorption spectroscopy that the nitroanisole has an absorption band around 10.6μm in the IR region. Therefore, the interference fringe pattern that is generated on the nitroanisole by the IR beams may be treated as a phase grating for visible light. A Fresnel diffraction pattern made by visible laser light that is transmitted through the phase grating, i.e. the nitroanisole, can be observed as a superposition of the intensities corresponding to the profile of the phase grating and its harmonic components. Additionally, in response to a shift of the interference fringe on the nitroanisole, the Fresnel diffraction pattern on the observation plane also shifts by an equal amount. Utilizing this characteristic of nitroanisole, we attempted to estimate the IR phase map by applying the phase-shifting method to the diffraction patterns. We conducted an experiment aimed to measure the angle of a wedge of ZnSe, which is an IR transmitting material, and we confirmed the feasibility of obtaining phase measurements in the IR region by this procedure.

MISC

  • 大塚愛美, 安田耕一, 湊川英樹, 出倉康裕, 青山英史, 清水伸一, 鈴木隆介, 宮本直樹, 清水伸一, 鈴木崇祥, 対馬那由多, 加納里志, 田口純, 清水康, 本間明宏, 清水伸一  Japanese Journal of Radiology  40-  (Supplement)  2022
  • 18F-DiFA PET/CTイメージングを用いたエリブリンによる腫瘍内低酸素解除効果の解析と放射線増感作用の検討(Eribulin improves tumor oxygenation demonstrated by 18F-DiFA hypoxia imaging, leading to radio-sensitization in human breast cancer xenograft model)
    房 知輝, 安井 博宣, 志賀 哲, 柴田 悠貴, 藤本 政毅, 鈴木 基史, 東川 桂, 宮本 直樹, 稲波 修, 久下 裕司  日本放射線影響学会大会講演要旨集  63回-  119  -119  2020/10
  • 田口大志, 橋本孝之, 橋本孝之, 加藤徳雄, 木下留美子, 安田耕一, 西岡健太郎, 西岡健太郎, 森崇, 打浪雄介, 宮本直樹, 高尾聖心, 清水伸一, 清水伸一, 青山英史  日本癌治療学会学術集会(Web)  58th-  2020
  • KASAMATSU Koki, MATSUURA Taeko, MATSUURA Taeko, TAKAO Seishin, TAKAO Seishin, TANAKA Sodai, TANAKA Sodai, MIYAMOTO Naoki, MIYAMOTO Naoki, NAM Jin-Min, SHIRATO Hiroki, SHIRATO Hiroki, UMEGAKI Kikuo, UMEGAKI Kikuo  日本医学物理学会学術大会報文集  119th-  2020
  • 貫洞大地, 柳瀬佳亮, 富岡智, 宮本直樹, 上田亮介, HESHMAT Samia  Optics & Photonics Japan講演予稿集(CD-ROM)  2019-  2019
  • 前立腺癌治療の新たな展開:ハイリスク前立腺癌に対する拡大手術、粒子線治療、ネオアジュバント治療 ハイリスク前立腺がんに対する強度変調放射線治療・陽子線治療 現状と可能性
    清水 伸一, 橋本 孝之, 西岡 健太郎, 安部 崇重, 大澤 崇宏, 松本 隆児, 松浦 妙子, 宮本 直樹, 高尾 聖心, 鈴木 隆介, 梅垣 菊男, 篠原 信雄, 白土 博樹  日本癌治療学会学術集会抄録集  56回-  SY5  -2  2018/10  [Not refereed][Not invited]
  • Y. Uchinami, N. Katoh, D. Abo, K. Harada, Y. Nishikawa, T. Inoue, T. Hashimoto, R. Onimaru, N. Miyamoto, Y. Sakuhara, S. Shimizu, H. Shirato  INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS  99-  (2)  E194  -E194  2017/10  [Not refereed][Not invited]
  • 頭蓋底腫瘍術後に強度変調放射線治療を行った2例
    森 崇, 宮本 直樹, 鈴木 隆介, 鬼丸 力也, 白土 博樹  Japanese Journal of Radiology  35-  (Suppl.)  4  -4  2017/02  [Not refereed][Not invited]
  • S. Shimizu, N. Katoh, T. Hashimoto, K. Nishioka, T. Yoshimura, S. Takao, T. Matsuura, N. Miyamoto, K. Umegaki, H. Shirato  INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS  96-  (2)  S211  -S212  2016/10  [Not refereed][Not invited]
  • 食道IMRTにおけるintra-fractional organ motionの影響
    田村 弘詞, 宮本 直樹, 鈴木 隆介, 堀田 賢治, 藤田 勝久, 井上 哲也  日本放射線技術学会雑誌  72-  (9)  873  -874  2016/09  [Not refereed][Not invited]
  • T. Kanehira, T. Matsuura, S. Takao, Y. Matsuzaki, Y. Fujii, T. Fujii, N. Miyamoto, T. Inoue, N. Katoh, S. Shimizu, K. Umegaki, H. Shirato  MEDICAL PHYSICS  43-  (6)  2016/06  [Not refereed][Not invited]
  • T. Fujii, T. Matsuura, S. Takao, N. Miyamoto, Y. Matsuzaki, Y. Fujii, K. Umegaki, S. Shimizu, H. Shirato  MEDICAL PHYSICS  43-  (6)  3389  -3389  2016/06  [Not refereed][Not invited]
  • SHIMIZU Shinichi, KATOH Norio, TAKAO Seishin, MATSUURA Taeko, MIYAMOTO Naoki, HASHIMOTO Takayuki, NISHIOKA Kentaro, YOSHIMURA Takaaki, UMEGAKI Kikuo, SHIRATO Hiroki  日本医学放射線学会総会抄録集  75th-  S225  -S225  2016/02/29  [Not refereed][Not invited]
  • 宮本 直樹, 石川 正純, 井上 哲也, 加藤 徳雄, 清水 伸一, 鬼丸 力也, 白土 博樹  臨床放射線  61-  (2)  293  -302  2016/02  [Not refereed][Not invited]
  • 椎体IMRTとその精度に関する研究
    安田 耕一, 清水 伸一, 橋本 孝之, Sutherland Ken, 白土 博樹, 土屋 和彦, 加藤 徳雄, 鬼丸 力也, 木下 留美子, 井上 哲也, 西岡 健太郎, 西川 由記子, 森 崇, 原田 慶一, 原田 八重, 鈴木 隆介, 寅松 千枝, 松浦 妙子, 高尾 聖心, 宮本 直樹, 伊藤 陽一  Japanese Journal of Radiology  34-  (Suppl.)  5  -5  2016/02  [Not refereed][Not invited]
  • 照射中と4DCT撮像時の肺内マーカー移動の比較
    原田 慶一, 加藤 徳雄, 井上 哲也, 鬼丸 力也, 清水 伸一, 白土 博樹, 鈴木 隆介, 宮本 直樹, 石川 正純  Japanese Journal of Radiology  34-  (Suppl.)  10  -10  2016/02  [Not refereed][Not invited]
  • N. Miyamoto, M. Ishikawa, R. Suzuki, A. Makinaga, T. Matsuura, S. Takao, Y. Matsuzaki, T. Inoue, N. Katoh, S. Shimizu, R. Onimaru, H. Shirato  INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS  93-  (3)  E554  -E554  2015/11  [Not refereed][Not invited]
  • S. Shimizu, N. Katoh, S. Takao, T. Matsuura, N. Miyamoto, T. Hashimoto, K. Nishioka, T. Yoshimura, Y. Matsuzaki, R. Kinoshita, Y. Nishikawa, R. Onimaru, K. Umegaki, H. Shirato  INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS  93-  (3)  S42  -S42  2015/11  [Not refereed][Not invited]
  • 新規動体追跡技術により可能になる3D imagingによる自由行動マウスの全身の遺伝子発現追跡定量法の開発
    浜田 俊幸, 石川 正純, Sutherland Kenneth, 宮本 直樹, 白土 博樹, 本間 さと, 本間 研一  バイオイメージング  24-  (2)  114  -114  2015/09  [Not refereed][Not invited]
  • Hiroki Shirato, Rikiya Onimaru, Shinichi Shimizu, Naoki Miyamoto, Ruijiang Li, Albert C. Koong, Masahiro Mizuta  Stereotactic Body Radiation Therapy: Principles and Practices  239  -250  2015/08/06  [Not refereed][Not invited]
  • N. Miyamoto, S. Takao, T. Matsuura, Y. Matsuzaki, T. Yamada, Y. Fujii, Y. Matsuo, T. Kidani, Y. Egashira, T. Umekawa, S. Shimizu, H. Shirato, K. Umegaki  MEDICAL PHYSICS  42-  (6)  3678  -3678  2015/06  [Not refereed][Not invited]
  • T. Yamada, N. Miyamoto, T. Matsuura, S. Takao, Y. Matsuzaki, Y. Fujii, H. Koyano, H. Nihongi, M. Umezawa, K. Matsuda, K. Umegaki, H. Shirato  MEDICAL PHYSICS  42-  (6)  3394  -3394  2015/06  [Not refereed][Not invited]
  • K. Umegaki, T. Matsuuta, S. Takao, Y. Matsuzaki, T. Yamada, Y. Fujii, N. Miyamoto, S. Shimizu, H. Shirato  MEDICAL PHYSICS  42-  (6)  3728  -3728  2015/06  [Not refereed][Not invited]
  • T. Matsuura, Y. Fujii, S. Takao, T. Yamada, Y. Matsuzaki, N. Miyamoto, T. Takayanagi, S. Fujitaka, S. Shimizu, H. Shirato, K. Umegaki  MEDICAL PHYSICS  42-  (6)  3207  -3208  2015/06  [Not refereed][Not invited]
  • Y. Fujii, T. Matsuura, S. Takao, Y. Matsuzaki, T. Yamada, N. Miyamoto, S. Shimizu, K. Umegaki, H. Shirato  MEDICAL PHYSICS  42-  (6)  3449  -3449  2015/06  [Not refereed][Not invited]
  • 新規4D imagingによる自由行動マウスの全身の時計遺伝子発現制御機構の解析
    浜田 俊幸, Sutherland Kenneth, 石川 正純, 宮本 直樹, 本間 さと, 白土 博樹, 本間 研一  日本薬学会年会要旨集  135年会-  (2)  290  -290  2015/03  [Not refereed][Not invited]
  • 4DCTを用いた肺内マーカー移動の解析
    加藤 徳雄, 原田 慶一, 鈴木 隆介, 井上 哲也, 鬼丸 力也, 清水 伸一, 宮本 直樹, 白土 博樹  Japanese Journal of Radiology  33-  (Suppl.)  5  -5  2015/02  [Not refereed][Not invited]
  • 【放射線治療活用BOOK 2014】 (DIVISION-3)これからの放射線治療の展望 最新の動体追跡放射線治療装置
    宮本 直樹, 石川 正純, 松浦 妙子, 井上 哲也, 加藤 徳雄, 清水 伸一, 鬼丸 力也, 梅垣 菊男, 白土 博樹  Rad Fan  12-  (15)  75  -77  2014/12  [Not refereed][Not invited]
     
    動体追跡法は、日本が世界に先駆けて実現してきた治療法であり、多くの実績を有する。本稿では、最新の迎撃照射型動体追跡装置として、島津製作所からリリースされたX線治療用動体追跡装置「SyncTraX」、日立製作所からリリースされた動体追跡陽子線スポットスキャニングシステム「PROBEAT-RT」について、その特徴と利点を紹介する。(著者抄録)
  • S. Shimizu, S. Takao, T. Matsuura, N. Miyamoto, R. Baba, T. Umekawa, K. Matsuda, T. Sasaki, Y. Nagamine, K. Umegaki, H. Shirato  INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS  90-  S920  -S920  2014/09  [Not refereed][Not invited]
  • 新動体追跡システムにおけるゲート照射時のビーム特性の評価
    田村 弘詞, 宮本 直樹, 藤田 勝久, 堀田 賢治, 斉藤 英一  日本放射線技術学会雑誌  70-  (9)  973  -973  2014/09  [Not refereed][Not invited]
  • Yuichi Hirata, Naoki Miyamoto, Morihito Shimizu, Mitsuhiro Yoshida, Kazuo Hiramoto, Yoshiaki Ichikawa, Shuji Kaneko, Tsuyoshi Sasagawa, Masahiro Hiraoka, Hiroki Shirato  Synthesiology  7-  (4)  238  -246  2014/01/01  [Not refereed][Not invited]
     
    © 2014, National Institute of Advanced Industrial Science and Technology(AIST). In radiation therapy for cancer, there are possibilities of changing of positions of the affected area during irradiation due to respiration of a patient. In order to enhance effects of irradiation for the affected area and minimize damages to the surrounding normal tissues, four dimensional radiotherapy (4DRT), which can take into account time variation of the three-dimensional position of the affected area, has been recently developed, and has been achieving significant therapeutic effect. We have proposed the International Electrotechnical Commission (IEC) standards including technical requirements of the safety aspects of the systems which realize this 4DRT, taking into account the time variation. The reason for the proposal is that international standardization will be very effective to ensure safety of 4DRT, and international standards of IEC will have compelling force if regulatory agencies refer to them. The purpose of this paper is to summarize the analysis of the strategy in a precedent endeavor toward international standardization of the 4DRT systems, for which demands are increasing. The main point of the strategy is forming an international consensus by bringing together the opinions of specialists from various fields from a clinical point of view, focusing on the international standardization of the technical requirements of the safety aspects of the 4DRT. Based on such a strategy, we will promote developing new standards by evaluating the overall safety of the 4DRT systems for further expanding use, in addition to updating existing standards of particular equipment which constitute the 4DRT systems.
  • 浜田俊幸, 石川正純, SUTHERLAND K, 宮本直樹, 白土博樹, 本間さと, 本間研一  日本生理学雑誌  75-  (4)  206  -207  2013/07/01  [Not refereed][Not invited]
  • T. Matsuura, Y. Fujii, R. Fujimoto, M. Umezawa, N. Miyamoto, K. Sutherland, S. Takao, H. Nihongi, C. Toramatsu, S. Shimizu, K. U. Megaki, H. Shirato  Medical Physics  40-  (6)  308  2013  [Not refereed][Not invited]
     
    Purpose: To mitigate the impact of tumor motion in spot‐scanning proton beam therapy, the gating technique has been considered as a powerful tool. Although residual tumor motion of a few millimeters of gate volume can still cause a dose error, the error can be minimized by repainting. However, a larger number of paintings also results in the prolongation of treatment time. We propose a method which improves the dose uniformity while minimally increasing the number of paintings. Methods: Lateral beam tracking was applied in conjunction with gating. A simulation study was performed using the VQA treatment planning system (Hitachi Ltd., Japan) to assess the effectiveness of this method. A gated proton beam provided by a synchrotron was irradiated to spherical clinical target volumes (CTVs) with a diameter of 5 cm located at 10 cm and 15 cm depth in a heterogeneous phantom. The system delay time was 66 ms. Gate width was set to 2 mm. Rigid motion was assumed for CTVs which were shifted in synchronization with 20 patients' tumor trajectory data. A dose of 2 Gy was prescribed with the minimum repainting scheme. The cases that fulfilled the ICRU 50 criteria (CTVmax< 107% and CTVmin> 95%) were accepted. Results: When only gating was used, 12 and 16 out of 20 cases were accepted for targets at 10 cm and 15 cm depth, respectively. On the other hand, when beam tracking was also applied, all cases were accepted for both target depths. Conclusion: The results suggest that the application of lateral beam tracking in gate volume can improve the dose uniformity without (or minimally) increasing the number of paintings. A simulation including non‐rigid patient motion will be considered in the future. © 2013, American Association of Physicists in Medicine. All rights reserved.
  • M. Ishikawa, S. Tanabe, S. Yamaguchi, N. Ukon, T. Yamanaka, K. Sutherland, N. Miyamoto, R. Suzuki, N. Katoh, K. Yasuda, H. Shirato  Medical Physics  40-  162  2013/01/01  [Not refereed][Not invited]
     
    Purpose: Molecular imaging is one of the important modalities in delineating tumors particularly in radiotherapy treatment planning. If the real‐time tumor position can be detected using molecular imaging during radiotherapy, it may be helpful for gated irradiation. A feasibility study on a beam gating system for radiotherapy using real‐time molecular imaging was conducted by the prototype and simulating a parallel plane PET system. Methods: Assuming that the motion of the positron source is constrained to the central plane, the source position can be calculated from a cross point of the Line of Response (LOR) and the central plane between detector surfaces. If a positron source is located at the ISO center, distribution of the cross points might be blurred due to random/scattered coincidence. Center Located Ratio (CLR) was defined as a ratio of LORs passing through the ISO center divided by the entire LORs. When dislocation for perpendicular direction is occurred, a distribution of cross points will be spread out and associated decrease of CLR value will be expected. Results: The behavior between real measurement and simulation was similar on proto‐type experiments, however, the Result from simulation for demonstrator might be different from actual measurement. RTRT system recognizes the position of a gold marker in the rate of 30 fps using two X‐ray television systems. It is shown that 15,000 events per second will be needed for an appropriate gating irradiation to recognize discrepancy over 2mm of time resolution in the parallel plane PET system demonstrator. Conclusion: A feasibility study was carried out to verify the potential for gating irradiation of tumors with real‐time molecular imaging using a parallel plane PET system. For an parallel plane PET system demonstrator, the possibility of detecting the tumor position with an accuracy of 2 mm from the ISO center with 500 events. This research was a part of the “Innovation COE Program for Future Drug Discovery and Medical Care” project and partially supported by the Grant‐in‐Aid for Project for Developing Innovation Systems of the Japanese Ministry of Education, Culture, Sports, Science and Technology. © 2013, American Association of Physicists in Medicine. All rights reserved.
  • Masumi Umezawa, Rintaro Fujimoto, Tooru Umekawa, Yuusuke Fujii, Taisuke Takayanagi, Futaro Ebina, Takamichi Aoki, Yoshihiko Nagamine, Koji Matsuda, Kazuo Hiramoto, Taeko Matsuura, Naoki Miyamoto, Hideaki Nihongi, Kikuo Umegaki, Hiroki Shirato  AIP Conference Proceedings  1525-  360  -363  2013  [Not refereed][Not invited]
     
    Hokkaido University and Hitachi Ltd. have started joint development of the Gated Spot Scanning Proton Therapy with Real-Time Tumor-Tracking System by integrating real-time tumor tracking technology (RTRT) and the proton therapy system dedicated to discrete spot scanning techniques under the "Funding Program for World-Leading Innovative R& D on Science and Technology (FIRST Program)". In this development, we have designed the synchrotron-based accelerator system by using the advantages of the spot scanning technique in order to realize a more compact and lower cost proton therapy system than the conventional system. In the gated irradiation, we have focused on the issues to maximize irradiation efficiency and minimize the dose errors caused by organ motion. In order to understand the interplay effect between scanning beam delivery and target motion, we conducted a simulation study. The newly designed system consists of the synchrotron, beam transport system, one compact rotating gantry treatment room with robotic couch, and one experimental room for future research. To improve the irradiation efficiency, the new control function which enables multiple gated irradiations per synchrotron cycle has been applied and its efficacy was confirmed by the irradiation time estimation. As for the interplay effect, we confirmed that the selection of a strict gating width and scan direction enables formation of the uniform dose distribution. © 2013 AIP Publishing LLC.
  • N. Miyamoto, M. Ishikawa, K. Sutherland, R. Suzuki, T. Matsuura, S. Takao, C. Toramatsu, H. Nihongi, S. Shimizu, R. Onimaru, K. Umegaki, H. Shirato  Medical Physics  39-  (6)  3661  -3662  2012/06  [Not refereed][Not invited]
     
    Purpose: In the real‐time tumor‐tracking radiotherapy system, fiducial markers are detected by X‐ray fluoroscopy. The fluoroscopic parameters should be optimized as low as possible in order to reduce unnecessary imaging dose. However, the fiducial markers could not be recognized due to effect of statistical noise in low dose imaging. Image processing is envisioned to be a solution to improve image quality and to maintain tracking accuracy. In this study, a recursive image filter adapted to target motion is proposed. Methods: A fluoroscopy system was used for the experiment. A spherical gold marker was used as a fiducial marker. About 450 fluoroscopic images of the marker were recorded. In order to mimic respiratory motion of the marker, the images were shifted sequentially. The tube voltage, current and exposure duration were fixed at 65 kV, 50 mA and 2.5 msec as low dose imaging condition, respectively. The tube current was 100 mA as high dose imaging. A pattern recognition score (PRS) ranging from 0 to 100 and image registration error were investigated by performing template pattern matching to each sequential image. The results with and without image processing were compared. Results: In low dose imaging, theimage registration error and the PRS without the image processing were 2.15±1.21 pixel and 46.67±6.40, respectively. Those with the image processing were 1.48±0.82 pixel and 67.80±4.51, respectively. There was nosignificant difference in the image registration error and the PRS between the results of low dose imaging with the image processing and that of high dose imaging without the image processing. Conclusions: The results showed that the recursive filter was effective in order to maintain marker tracking stability and accuracy in low dose fluoroscopy. © 2012, American Association of Physicists in Medicine. All rights reserved.
  • 右近直之, 棚邊哲史, 棚邊哲史, 山中琢, 山口哲, SUTHERLAND Kenneth, 鈴木隆介, 宮本直樹, 白土博樹, 石川正純  医学物理 Supplement  32-  (3)  2012
  • T. Matsuura, K. Maeda, K. Sutherland, T. Takayanagi, S. Shimizu, S. Takao, H. Nihongi, C. Toramatsu, N. Miyamoto, Y. Nagamine, R. Fujimoto, K. Umegaki, H. Shirato  Medical Physics  39-  (6)  3872  2012  [Not refereed][Not invited]
     
    Purpose: In spot scanning proton therapy, accurate patient positioning before and during treatment is essential. A small gold ball marker is suitable as a fiducial for prostate treatment. However, it has been pointed out that the marker causes dose shadowing because the protons are scattered with their energy quickly diminished. In this research we explore the possibility that the biological effect of dose shadowing can be mitigated with a limited number of fields. Methods: The proton dose distribution in prostate was simulated using Geant4. The simulations include the Hokkaido University spot scanning nozzle and a water phantom positioned isocentrically. The PTV was delineated at the center of the phantom and a gold ball of 2 mm in diameter was placed at the middle of the PTV. The plan was created by single‐field optimization and each of the following beam arrangements was investigated (1) single lateral field (2) two lateral fields (3) two lateral + one anterior fields (4) four‐field box. The dose prescription was D95 = 74 GyE (37 fr). The minimum dose and tumor control probability (TCP) were compared for the four beam arrangements. Results: For (1)–(4), the minimum dose values were 55%, 77%, 78%, and 84% of the prescribed dose, respectively. The reduction of the TCP values from those in the absence of the gold marker were 50%, 2%, 1.1%, and 0.7%, using the TCP model by Wang et al. (Int.J.Radiat.Oncol.Biol.Phys. 55, 2003) and 2%, 0.7%, 0.5%, and 0.4%, using the biological parameters in Levegrün et al. (Int.J.RadiatOncol.Biol.Phys. 51, 2001), respectively. Conclusions: Although dose shadowing by the gold marker is locally non‐negligible, the size of the affected domain is tiny. It was found that with a minimum number of fields, the TCP nearly recovers to the value without the gold marker. © 2012, American Association of Physicists in Medicine. All rights reserved.
  • C. Toramatsu, T. Matsuura, H. Nihongi, S. Takao, N. Miyamoto, S. Shimizu, R. Kinoshita, K. Umegaki, H. Shirato  Medical Physics  39-  3821  -3822  2012/01/01  [Not refereed][Not invited]
     
    Purpose: To investigate the possibility of using a single spot scanning proton beam to treat superficial lesions. Methods: A cylindrical phantom with a simulated superficial target (it seated 0.5–4cm depth from the surface, volume: 270cm 3 ) was created in Eclipse treatment planning system. Three proton plans were generated: (a) a single AP uniform scanning beam with aperture and range compensator; (b) a single AP spot scanning beam with a pre‐absorber. The location and thickness of the pre‐absorber were calculated using Geant4 to Monte Carlo code to make use of the available spot scanning beams to get a conformal plan. (c) a five‐beam spot scanning beam plan using multi‐field optimization. The prescription is 54 cobalt grey equivalent (CGE) which covers 95% of the target. The target coverage, lateral penumbra at 2 and 4cm depth in water, the doses to normal tissue (phantom‐target) and skin (2mm from the surface) were evaluated and compared for three plans. Results: The mean doses to the target are comparable within 2.4% for all three plans. The conformity indices (at 95%) are 1.36, 1.04 and 0.98 for plan (a), (b) and (c) respectively. The lateral penumbra (80% to 20%) for plan (a), (b) are both 0.73 cm, while it is 3.75 cm for plan (c). The skin dose which received more than 40 (CGE) from plan (a) is 10% higher than that of other two plans. Plan (c) has 70% higher mean doses to normal tissue than that of plan (a) and (b). Conclusions: Each plan provides good coverage of target. And in this study, it showed that, with a properly designed pre‐absorber, it is possible to use a single spot scanning beam to treat superficial lesion. The plan provides good target coverage and maintains normal tissue sparing in the mean time. © 2012, American Association of Physicists in Medicine. All rights reserved.
  • 長谷川雅一, 安田耕一, 吉田大介, 加藤徳雄, 鬼丸力也, 浅野剛, 白土博樹, 本間明宏, 折舘伸彦, 福田諭, 石川正純, BENGUA Gerard, SUTHERLAND Kenneth, 宮本直樹, 鈴木隆介  Jpn J Radiol  28-  (Supplement 1)  7  -7  2010/07/25  [Not refereed][Not invited]
  • 石川正純, 江口菜弥帆, 作原大介, 阿保大介, 太田真緒, SUTHERLAND Kenneth, BENGUA Gerard, 鈴木隆介, 宮本直樹, 白土博樹  日本医学放射線学会総会抄録集  69th-  S378  -S378  2010/02/28  [Not refereed][Not invited]
  • M. Ishikawa, S. Yamaguchi, S. Tanabe, G. Bengua, K. Sutherland, R. Suzuki, N. Miyamoto, K. Nishijima, N. Katoh, H. Shirato  INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS  78-  (3)  S674  -S674  2010  [Not refereed][Not invited]
  • N. Miyamoto, M. Ishikawa, G. Bengua, K. Sutherland, R. Suzuki, H. Shirato  INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS  78-  (3)  S678  -S678  2010  [Not refereed][Not invited]
  • S. Tanabe, M. Ishikawa, S. Yamaguchi, G. Bengua, K. Sutherland, R. Suzuki, N. Miyamoto, N. Katoh, R. Onimaru, H. Shirato  INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS  78-  (3)  S749  -S749  2010  [Not refereed][Not invited]
  • 加美山隆, 宮本直樹, 富岡智, 小崎完  日本原子力学会秋の大会予稿集(CD-ROM)  2008-  (0)  I13  -164  2008/08/21  [Not refereed][Not invited]
     
    本研究では、原子力用途を第一の目的とした核種分布の非破壊分析システムを構築するため、中性子共鳴吸収分光法(Neutron Resonance Absorption Spectroscopy; N-RAS)と計算機断層撮像法(Computer Tomography; CT)法の組み合わせによる分析法(N-RAS/CT)を提案し、実際に北海道大学の45MeV電子線ライナックに中性子共鳴吸収分光器および断層撮像用CTステージを建設した。これを用いて断層撮像用の中性子共鳴吸収スペクトル測定を行うことで、小型加速器中性子源を用いた測定システムにおいて1mm程度の分解能で核種分布の断層イメージング結果が得られた。
  • 宮本直樹, 小崎完, 富岡智, 加美山隆  日本非破壊検査協会大会講演概要集  2007-  335  -338  2007/10/18  [Not refereed][Not invited]
  • 宮本直樹, 小崎完, 富岡智, 加美山隆  日本原子力学会秋の大会予稿集(CD-ROM)  2007-  (0)  C51  -171  2007/09/07  [Not refereed][Not invited]
     
    中性子共鳴吸収分光法と計算機断層撮像法を組み合わせることにより、非破壊で核種分布を断層撮影することが可能な分析法の開発を目的としている。複数の核種の存在分布、およびその密度分布を再構成できることを示した。

Presentations

  • Evaluation of measurement accuracy of novel monoscopic X-ray imaging technique for three-dimensional target localization using multiple internal fiducial markers  [Not invited]
    Naoki Miyamoto, Ryusuke Suzuki, Seishin Takao, Taeko Matsuura, Shusuke Hirayama, Takaaki Fujii, Satoshi Tomioka, Shinichi Shimizu, Kikuo Umegaki, Hiroki Shirato
    第114回医学物理学会  2017/09  大阪
  • Target tumor localization algorithm using multiple fiducial markers for Real-time Tumor-tracking Radiation Therapy  [Not invited]
    Yohei Arai, Hideaki Ueda, Haruo Nakagawa, Naoki Miyamoto, Kikuo Umegaki
    第114回医学物理学会  2017/09  大阪
  • Evaluation of dosimetric error with utilizing respiratory motion modeling aimed for beam angle optimization in proton beam therapy  [Not invited]
    Haruo Nakagawa, Naoki Miyamoto, Shusuke Hirayama, Hideaki Ueda, Kohei Yokokawa, Kikuo Umegaki
    第114回医学物理学会  2017/09  大阪
  • Evaluation of the sensitivity to variable RBE considering LET dependence for the robust optimization and the PTV-based optimization  [Not invited]
    Shusuke Hirayama, Taeko Matsuura, Hideaki Ueda, Seishin Takao, Hidenori Koyano, Takaaki Fujii, Naoki Miyamoto, Shinichi Shimizu, Yusuke Fujii, Rintaro Fujimoto, Kikuo Umegaki, Hiroki Shirato
    第114回医学物理学会  2017/09  大阪
  • Evaluation of Water-Equivalent-Thickness (WET) deviation between Plan CT and Re-plan CT for prostate cancer in Spot-Scanning Proton-beam Therapy  [Not invited]
    Takaaki Fujii, Taeko Matsuura, Seishin Takao, Shusuke Hirayama, Naoki Miyamoto, Kikuo Umegaki, Shinichi Shimizu, Toru Umekawa, Hiroki Shirato
    第114回医学物理学会  2017/09  大阪
  • Monoscopic X-ray imaging for real-time three-dimensional target localization using multiple internal fiducial markers  [Not invited]
    Naoki Miyamoto, Ryusuke Suzuki, Seishin Takao, Taeko Matsuura, Takaaki Fujii, Yusuke Hirayama, Hidenori Koyano, Shinichi Shimizu, Kikuo Umegaki, Hiroki Shirato
    2017 AAPM Annual Meeting  2017/07  Denver
  • Novel 4D-CBCT reconstruction technique for moving target using fiducial-marker position  [Not invited]
    Takaaki Fujii, Seishin Takao, Taeko Matsuura, Naoki Miyamoto, Shusuke Hirayama, Shinnichi Shimizu, Kikuo Umegaki, Rika Baba, Toru Umekawa, Hiroki Shirato
    PTCOG 2017  2017/05  Yokohama
  • The Retrospective Interplay Effect Evaluation for Real-time Image-gated Proton Therapy using the Fiducial Marker Motion and Treatment Machine Log  [Not invited]
    Shusuke Hirayama, Taeko Matsuura, Hidenori Koyano, Seishin Takao, Takaaki Fujii, Naoki Miyamoto, Shinichi Shimizu, Yusuke Fujii, Takahiro Yamada, Hideaki Nihongi, Toru Umekawa, Rintaro Fujimoto, Kikuo Umegaki, Hiroki Shirato
    第113回医学物理学会  2017/04  横浜
  • Analysis software to evaluate deviation of water-equivalent thickness along proton beam path between Plan CT and CBCT for proton therapy  [Not invited]
    Takaaki Fujii, Taeko Matsuura, Seishin Takao, Naoki Miyamoto, Shusuke Hirayama, Kikuo Umegaki, Shinichi Shimizu, Toru Umekawa, Rika Baba, Hiroki Shirato
    第113回医学物理学会  2017/04  横浜
  • 体内複数マーカの軌跡データを用いた呼吸による肺の変形の再現性の評価  [Not invited]
    宮本直樹, 高尾聖心, 松浦妙子, 松崎有華, 鈴木隆介, 井上哲也, 加藤徳雄, 鬼丸力也, 清水伸一, 白土博樹
    日本放射線腫瘍学会第29回学術大会  2016/11  京都
  • 肺体幹部定位照射中における腫瘍の複雑な動きの解析と動体追跡放射線治療による対策  [Invited]
    宮本直樹
    日本放射線腫瘍学会第29回学術大会  2016/11  京都
  • 食道IMRTにおけるintra-fractional organ motionの影響  [Not invited]
    田村弘詞, 宮本直樹, 鈴木隆介, 堀田賢治, 藤田勝久, 井上哲也
    第44回日本放射線技術学会秋期学術大会  2016/10  埼玉
  • Analysis of Times and Dose Rates for Treating Moving Liver Tumors Using Real-time-image Gated Spot Scanning Proton Beam Therapy System  [Not invited]
    Shinichi Shimizu, Norio Katoh, Takayuki Hashimoto, Kentaro Nishioka, Takaaki Yoshimura, Seishin Takao, Taeko Matsuura, Naoki Miyamoto, Kikuo Umegaki, Hiroki Shirato
    58th ASTRO Annual meeting  2016/09  Boston
  • Initial Study for the System of Estimating Entrance Skin Dose from X-ray Fluoroscopy during Real-time image Gated Proton Therapy  [Not invited]
    Yuto Matsuo, Taeko Matsuura, Seishin Takao, Naoki Miyamoto, Yuka Matsuzaki, Takaaki Fujii, Shusuke Hirayama, Takaaki Yoshimura, Kikuo Umegaki, Katsuhisa Fujita, Shinichi Shimizu, Hiroki Shirato
    第112回医学物理学会  2016/09  沖縄
  • Modeling of respiratory tumor motion for dosimetric evaluation in proton beam therapy  [Not invited]
    Haruo Nakagawa, Naoki Miyamoto, Hideaki Ueda, Kohei Yokokawa, Yuka Matsuzaki, Mayuko Nagata, Kikuo Umegaki
    第112回医学物理学会  2016/09  沖縄
  • 動体追跡研究及び4DCBCT研究向け画像解析プラットフォームの開発  [Not invited]
    藤井孝明, 松浦妙子, 高尾聖心, 宮本直樹, 松崎有華, 平山嵩祐, 清水伸一, 梅垣菊男, 白土博樹
    第112回医学物理学会  2016/09  沖縄
  • Weighted tomographic image reconstruction for time varying object  [Not invited]
    Satoshi Tomioka, Daiki Naito, Shusuke Nishiyama, Naoki Miyamoto, Kikuo Umegaki
    第112回医学物理学会  2016/09  沖縄
  • 体内マーカ3次元軌跡の解析による呼吸位相評価を利用した動体追跡放射線治療の患者位置決め/ゲート照射の効率化  [Not invited]
    宮本直樹, 鈴木隆介, 高尾聖心, 松浦妙子, 松崎有華, 藤井孝明, 富岡智, 清水伸一, 梅垣菊男, 白土博樹
    第112回医学物理学会  2016/09  沖縄
  • Simulation Study of Real-time-image Gating on Spot Scanning Proton Therapy for Lung Tumors  [Not invited]
    Takahiro Kanehira, Taeko Matsuura, Seishin Takao, Yuka Matsuzaki, Yusuke Fujii, Takaaki Fujii, Naoki Miyamoto, Tetsuya Inoue, Norio Katoh, Shinichi Shmizu, Kikuo Umegaki, Hiroki Shirato
    2016 AAPM Annual Meeting  2016/07  Washington DC
  • Software development for 4D-CBCTresearchesof Real-time-image gated Spot Scanning Proton Therapy  [Not invited]
    Takaaki Fujii, Taeko Matsuura, Seishin Takao, Naoki Miyamoto, Yuka Matsuzaki, Yusuke Fujii, Kikuo Umegaki, Shinichi Shimizu, Hiroki Shirato
    2016 AAPM Annual Meeting  2016/07  Washington DC
  • An Initial Comparison Study of Motion Interplay Effects between IMPT and SFUD in Liver Real-time-image Gated, Spot-scanning Proton Beam Therapy  [Not invited]
    Taeko Matsuura, Seishin Takao, Yuka Matsuzaki, Yusuke Fujii, Takaaki Fujii, Naoki Miyamoto, Norio Katoh, Shinichi Shimizu, Hiroki Shirato, Kikuo Umegaki
    PTCOG 2016  2016/05  Czech
  • The evaluation of plan robustness for spot-scanning proton irradiation  [Not invited]
    Yuka Matsuzaki, Taeko Matsuura, Seishin Takao, Yusuke Fujii, Takaaki Fujii, Naoki Miyamoto, Shinichi Shimizu, Norio Katoh, Kikuo Umegaki, Hiroki Shirato
    PTCOG 2016  2016/05  Czech
  • 陽子線治療装置回転ガントリー搭載型二軸X線撮影装置を用いたCBCT時短撮影の実現可能性検討  [Not invited]
    高尾聖心, 清水伸一, 宮本直樹, 松浦妙子, 松崎有華, 藤井祐介, 藤井孝明, 梅垣菊男, 白土博樹
    第111回医学物理学会  2016/04  横浜
  • Dual Energy Subtraction 法を用いた動体標的認識技術の基礎検証  [Not invited]
    藤井孝明, 宮本直樹, 吉村高明, 松尾勇斗, 松浦妙子, 高尾聖心, 松崎有華, 藤井祐介, 梅垣菊男, 清水伸一, 白土博樹
    第111回医学物理学会  2016/04  横浜
  • 肝がんRGPTにおける腫瘍の動き起因の線量誤差比較-SFUD vs. IMPT  [Not invited]
    松浦妙子, 高尾聖心, 松崎有華, 藤井祐介, 藤井孝明, 宮本直樹, 金平孝博, 加藤徳雄, 清水伸一, 梅垣菊男, 白土博樹
    第111回医学物理学会  2016/04  横浜
  • スポットスキャニング陽子線治療における治療計画のRobustness評価  [Not invited]
    松崎有華, 松浦妙子, 高尾聖心, 藤井祐介, 藤井孝明, 宮本直樹, 清水伸一, 梅垣菊男, 白土博樹
    第111回医学物理学会  2016/04  横浜
  • 呼吸性移動の複雑さと対策:最新の動体追跡放射線治療  [Invited]
    宮本直樹, 高尾聖心, 原田慶一, 石川正純, 鈴木隆介, 松浦妙子, 牧永彩乃, 井上哲也, 加藤徳雄, 清水伸一, 鬼丸力也, 白土博樹
    第29回日本高精度放射線外部照射研究会  2016/02  東京
  • Development of a Real-time-image Gated Proton-beam Therapy (RGPT) system and its Initial Clinical Application to Respiratory Moving Liver Tumors  [Not invited]
    Shinichi Shimizu, Norio Katoh, Seishin Takao, Taeko Matsuura, Naoki Miyamoto, Takayuki Hashimoto, Kentaro Nishioka, Takaaki Yoshimura, Yuka Matsuzaki, Rumiko Kinoshita, Yukiko Nishikawa, Rikiya Onimaru, Kikuo Umegaki, Hiroki Shirato
    57th ASTRO Annual meeting  2015/10  San Antonio
  • Target Residual Motion During Beam Delivery in Gated Irradiation Using Real-Time Tumor-Tracking Radiotherapy System: Analysis of Simultaneous Motion of Multiple Internal Fiducial Markers  [Not invited]
    N. Miyamoto, M. Ishikawa, R. Suzuki, A. Makinaga, T. Matsuura, S. Takao, Y. Matsuzaki, T. Inoue, N. Katoh, S. Shimizu, R. Onimaru, H. Shirato
    57th ASTRO Annual meeting  2015/10  San Antonio
  • Evaluation of treatment time for real-time tumor-tracking radiotherapy  [Not invited]
    Hiroshi Tamura, Naoki Miyamoto, Ryusuke Suzuki, Kenji Horita, Katsuhisa Fujita
    第110回医学物理学会  2015/09  札幌
  • International standardization of complex real-time controlled radiotherapy systems for a moving target  [Not invited]
    Yuichi Hirata, Naoki Miyamoto, Matsuura Taeko, Yusuke Fujii, Kikuo Umegaki, Morihito Shimizu, Yoshiaki Ichikawa, Mitsuhiro Yoshida, Kazuo Hiramoto, Tsuyoshi Sasagawa, Shuji Kaneko, Yutaka Ando, Mitsuhiro Nakamura, Kenji Yokota, Teiji Nishio, Masahiro Hiraoka, Hiroki Shirato
    第110回医学物理学会  2015/09  札幌
  • Influence of patient repositioning on spot scanning proton therapy for prostate cancer  [Not invited]
    Yusuke Fujii, Taeko Matsuura, Seishin Takao, Yuka Matsuzaki, Naoki Miyamoto, Shinichi Shimizu, Kikuo Umegaki, Hiroki Shirato
    第110回医学物理学会  2015/09  札幌
  • 動体追跡放射線治療の有用性と最新の研究  [Invited]
    宮本直樹
    第110回医学物理学会  2015/09  札幌
  • Influence of the Intrafraction Patient Repositioning On Spot Scanning Proton Therapy for Prostate Cancer  [Not invited]
    Y Fujii, T Matsuura, S Takao, Y Matsuzaki, T Yamada, N Miyamoto, S Shimizu, K Umegaki, H Shirato
    2015 AAPM Annual Meeting  2015/07  Anaheim
  • Startup Experience of the New Proton Beam Therapy System with Gated Spot Scanning and Real-Time Tumor-Tracking  [Not invited]
    K Umegaki, T Matsuura, S Takao, Y Matsuzaki, T Yamada, Y Fujii, N Miyamoto, S Shimizu, H Shirato
    2015 AAPM Annual Meeting  2015/07  Anaheim
  • Development of An Applicator for Treating Shallow and Moving Tumors with Respiratory-Gated Spot-Scanning Proton Therapy Using Real-Time Image Guidance  [Not invited]
    T Matsuura, Y Fujii, S Takao, T Yamada, Y Matsuzaki, N Miyamoto, T Takayanagi, S Fujitaka, S Shimizu, H Shirato, K Umegaki
    2015 AAPM Annual Meeting  2015/07  Anaheim
  • Development of Evaluation System of Optimal Synchrotron Controlling Parameter for Spot Scanning Proton Therapy with Multiple Gate Irradiations in One Operation Cycle  [Not invited]
    T Yamada, N Miyamoto, T Matsuura, S Takao, Y Matsuzaki, Y Fujii, H Koyano, H Nihongi, M Umezawa, K Matsuda, K Umegaki, H Shirato
    2015 AAPM Annual Meeting  2015/07  Anaheim
  • Development and Commissioning of Real-Time Imaging Function for Respiratory-Gated Spot-Scanning Proton Beam Therapy  [Not invited]
    N Miyamoto, S Takao, T Matsuura, Y Matsuzaki, T Yamada, Y Fujii, Y Matsuo, T Kidani, Y Egashira, T Umekawa, S Shimizu, H Shirato, K Umegaki
    2015 AAPM Annual Meeting  2015/07  Anaheim
  • Commissioning & QA for SyncTraX for SRS  [Invited]
    Naoki Miyamoto, Masayori Ishikawa, Ryusuke Suzuki, Hiroshi Tamura, Katsuhisa Fujita, Tetsuya Inoue, Norio Katoh, Shinichi Shimizu, Rikiya Onimaru, Hiroki Shirato
    12th International Stereotactic Radiosurgery Society Congress  2015/06  Yokohama
  • Feasibility of fast cone-beam CT image acquisition with a dual-orthogonal fluoroscopic imaging system equipped on rotating gantry of proton beam therapy system  [Not invited]
    Seishin Takao, Shinichi Shimizu, Takahiro Yamada, Naoki Miyamoto, Taeko Matsuura, Yuka Matsuzaki, Yusuke Fujii, Toru Umekawa, Rika Baba, Kikuo Umegaki, Hiroki Shirato
    54th PTCOG  2015/05  San Diego
  • The Establishment of Patient-specific QA for Spot-Scanning Proton Beam Irradiation System at Hokkaido University  [Not invited]
    Yuka Matsuzaki, Taeko Matsuura, Seishin Takao, Takahiro Yamada, Yusuke Fujii, Naoki Miyamoto, Yuto Matsuo, Takaaki Yoshimura, Kikuo Umegaki, Hiroki Shirato
    54th PTCOG  2015/05  San Diego
  • Startup experience of gated spot scanning proton beam therapy system with real-time tumor-tracking  [Not invited]
    Kikuo Umegaki, Taeko Matsuura, Seishin Takao, Yuka Matsuzaki, Naoki Miyamoto, Takahiro Yamada, Yusuke Fujii, Shinichi Shimizu, Hiroki Shirato
    54th PTCOG  2015/05  San Diego
  • Machine QA for Spot-Scanning Proton Beam Irradiation System at Hokkaido University  [Not invited]
    Takahiro Yamada, Yuka Matsuzaki, Taeko Matsuura, Seishin Takao, Naoki Miyamoto, Yuto Matsuo, Takaaki Yoshimura, Kikuo Umegaki, Hiroki Shirato
    54th PTCOG  2015/05  San Diego
  • Commissioning of the on-board cone-beam CT system equipped on the rotating gantry of a proton beam therapy system  [Not invited]
    Takao S, Shimizu S, Miyamoto N, Matsuura T, Matsuzaki Y, Yamada T, Fujii Y, Matsuo Y, Umegaki K, Shirato H
    第109回医学物理学会  2015/04  横浜
  • Development of a short range applicator for real-time-image gated proton beam therapy  [Not invited]
    Taeko Matsuura, Yusuke Fujii, Seishin Takao, Yuka Matsuzaki, Takahiro Yamada, Naoki Miyamoto, Yuto Matsuo, Shinichiro Fujitaka, Tisuke Takayanagi, Kikuo Umegaki, Hiroki Shirato
    第109回医学物理学会  2015/04  横浜
  • 体内マーカー運動に基づく呼吸位相評価法の開発と待ち伏せ照射の高精度化への応用  [Not invited]
    宮本直樹, 石川正純, 鈴木隆介, 高尾聖心, 松浦妙子, 平田雄一, 加藤徳雄, 清水伸一, 梅垣菊男, 白土博樹
    第109回医学物理学会  2015/04  横浜
  • 北海道大学病院陽子線治療センターの動体追跡装置のコミッショニング  [Not invited]
    宮本直樹, 高尾聖心, 松浦妙子, 松崎有華, 山田貴啓, 藤井祐介, 松尾勇斗, 清水伸一, 梅垣菊男, 白土博樹
    第109回医学物理学会  2015/04  横浜
  • 体追跡放射線治療システムの臨床応用と今後の展望  [Invited]
    宮本直樹, 石川正純, 井上哲也, 加藤徳雄, 清水伸一, 鬼丸力也
    日本放射線腫瘍学会第27回学術大会  2014/12  横浜
  • Validation of treatment planning system of a spot-scanning proton therapy at Hokkaido University  [Not invited]
    Takahiro Yamada, Taeko Matsuura, Chie Toramatsu, Seishin Takao, Naoki Miyamoto, Shinichi Shimizu, Kikuo Umegaki, Hiroki Shirato
    7th Korea-Japan Meeting on Medical Physics  2014/09  Busan, Korea
  • Quality control of a next generation Realtime tumor tracking radiotherapy system  [Not invited]
    Suguru Kimura, Naoki Miyamoto, Kenneth Sutherland, Ryusuke Suzuki, Hiroki Shirato, Masayori Ishikawa
    7th Korea-Japan Meeting on Medical Physics  2014/09  Busan, Korea
  • Fundamental study of a new gating irradiation method in Real-Time tumor tracking radiotherapy (RTRT) system by using multiple internal fiducial marker  [Not invited]
    Kanako Otomo, Naoki Miyamoto, Masayori Ishikawa, Kenneth Sutherland, Ryusuke Suzuki, Taeko Matsuura, Rikiya Onimaru, Shinichirou Shimizu, Hiroki Shirato
    7th Korea-Japan Meeting on Medical Physics  2014/09  Busan, Korea
  • Dosimetric evaluation of the moving target in beam gating irradiation system  [Not invited]
    Naoki Miyamoto, Masayori Ishikawa, Ryusuke Suzuki, Yuichi Hirata, Tsuyoshi Sasagawa, Seiji Yamanaka, Hiroshi Tamura, Katsuhisa Fujita, Tetsuya Inoue, Norio Katoh, Hiroki Shirato
    7th Korea-Japan Meeting on Medical Physics  2014/09  Busan, Korea
  • Validation of beam accuracy of a gated spot-scanning proton therapy system with real-time tumor-tracking at Hokkaido University  [Not invited]
    Takahiro Yamada, Taeko Matsuura, Seishin Takao, Naoki Miyamoto, Chie Toramatsu, Shinichi Shimizu, Hideaki Nihongi, Taisuke Takayanagi, Masumi Umezawa, Koji Matsuda, Kikuo Umegaki, Hiroki Shirato
    AAPM 56th Annual Meeting,  2014/07  Austin
  • Commissioning of the On-board Cone-beam CT System Equipped on the Rotating Gantry of a Proton Therapy System  [Not invited]
    Takao S, Shimizu S, Miyamoto N, Matsuura T, Toramatsu C, Nihongi H, Yamada T, Matsuda K, Sasaki T, Nagamine Y, Baba R, Umekawa T, Umegaki K, Shirato H
    AAPM 56th Annual Meeting,  2014/07  Austin
  • A real-time patient positioning and monitoring system utilizing fluoroscopy  [Not invited]
    Kenneth Sutherland, Naoki Miyamoto, Hiroki Shirato
    CARS 2014  2014/06  Fukuoka
  • Clinical Commissioning of Hokkaido University Hospital Proton Therapy Center  [Not invited]
    Chie Toramatsu, Taeko Matsuura, Seishin Takao, Hideaki Nihongi, Takahiro Yamada, Naoki Miyamoto, Kikuo Umegaki, Rumiko Kinoshita, Shinichi Shimizu, Hiroki Shirato
    PTCOG 53  2014/06  Shanghai
  • Validation of beam performance of a new spot-scanning proton therapy system at Hokkaido University  [Not invited]
    Takahiro Yamada, Chie Toramatsu, Taeko Matsuura, Seishin Takao, Naoki Miyamoto, Hideaki Nihongi, Masumi Umezawa, Koji Matsuda, Kikuo Umegaki, Shinichi Shimizu, Hiroki Shirato
    PTCOG 53  2014/06  Shanghai
  • 北海道大学における分子追跡放射線治療装置のビーム性能の検証  [Not invited]
    二本木英明, 寅松千枝, 松浦妙子, 高尾聖心, 宮本直樹, 山田貴啓, 清水伸一, 梅垣菊男, 白土博樹, 松田浩二, 梅澤真澄
    第107回医学物理学会  2014/04  横浜
  • 北海道大学病院陽子線治療センターのクリニカルコミッショニング  [Not invited]
    寅松千枝, 松浦妙子, 高尾聖心, 二本木英明, 山田貴啓, 宮本直樹, 清水伸一, 梅垣菊男, 白土博樹
    第107回医学物理学会  2014/04  横浜
  • 次世代動体追跡装置のアクセプタンス/コミッショニング  [Not invited]
    石川 正純, 宮本 直樹, 篠川 毅, 山中 誓次, 堀田 賢治, 藤田 勝久, 鈴 木隆介, 鬼丸 力也, 井上 哲也, 白土 博樹
    第107回医学物理学会  2014/04  横浜
  • Development of a dynamic phantom for quality control in 4D radiotherapy  [Not invited]
    Naoki Miyamoto, Yuichi Hirata, Ryusuke Suzuki, Chie Toramatsu, Yuki Miyabe, Shuji Kaneko, Teiji Nishio, Shinichi Shimizu, Masayori Ishikawa, Hiroki Shirato
    第107回医学物理学会  2014/04  横浜
  • 3点の体内マーカーを用いた患者セットアップの有効性評価  [Not invited]
    加藤英斗, 宮本直樹, 大友加奈子, 鈴木隆介, 西岡健太郎, 清水伸一, 鬼丸力也, 石川正純, 白土博樹
    第27回日本高精度外部照射研究会  2014/02  東京
  • 次世代型RTRT:SyncTraXの開発から臨床応用へ  [Invited]
    宮本直樹, 石川正純, 井上哲也, 加藤徳雄, 清水伸一, 鬼丸力也, 白土博樹
    第27回日本高精度外部照射研究会  2014/02  東京
  • Development of a dynamic phantom for quality control in 4D radiotherapy  [Not invited]
    Naoki Miyamoto, Yuichi Hirata, Ryusuke Suzuki, Chie Toramatsu, Takashi Kozuka, Yuki Miyabe, Shuji Kaneko, Teiji Nishio, Shinichi Shimizu, Masayori Ishikawa, Hiroki Shirato
    4D (Treatment Planning) workshop  2013/11  Switzerland
  • Evaluation of the measurement accuracy of a novel monoscopic x-ray imaging system for real-time tumor-tracking radiotherapy  [Not invited]
    Naoki Miyamoto, Masayori Ishikawa, Kenneth Sutherland, Ryusuke Suzuki, Taeko Matsuura, Seishin Takao, Chie Toramatsu, Hideaki Nihongi, Shinichi Shimizu, Kikuo Umegaki, Hiroki Shirato
    4D (Treatment Planning) workshop  2013/11  Switzerland
  • 動体追跡装置における透視X線による患者被ばく線量の評価  [Not invited]
    木村傑, 宮本直樹, 鈴木隆介, 石川正純, 寅松千枝, 松浦妙子, 高尾聖心, 白土博樹
    第106回医学物理学会  2013/10  大阪
  • 陽子線治療が求められる腫瘍体積  [Not invited]
    寅松千枝, 加藤徳雄, 清水伸一, 二本木英明, 松浦妙子, 高尾聖心, 宮本直樹, 鈴木隆介, 木下留美子, 鬼丸力也, 石川正純, 梅垣菊男, 白土博樹
    日本放射線腫瘍学会第26回学術大会  2013/10  青森
  • 動体迎撃照射の現状と未来  [Invited]
    宮本直樹
    日本放射線腫瘍学会第26回学術大会  2013/10  青森
  • Baseline shift of intrafractional lung tumor motion in the real-time tumor-tracking radiotherapy  [Not invited]
    Seishin Takao, Naoki Miyamoto, Taeko Matsuura, Shinichi Shimizu, Rikiya Onimaru, Norio Katoh, Tetsuya Inoue, Hiroki Shirato
    55th ASTRO Annual Meeting  2013/09  Atlanta
  • Can 4D CT Imaging Predict Lung Motion During Stereotactic Body Radiation Therapy?  [Not invited]
    K. Harada, N. Katoh, R. Suzuki, T. Inoue, R. Onimaru, S. Shimizu, N. Miyamoto, M.Ishikawa, H. Shirato
    55th ASTRO Annual Meeting  2013/09  Atlanta
  • Conformal Therapy (ECT) and Spot Scanning Proton Therapy for Post-mastectomy Chest Wall Irradiation  [Not invited]
    Chie Toramatsu, Shinichi Shimizu, Taeko Matsuura, Naoki Miyamoto, Rumiko Kinoshita, Seishin Takao, Hideaki Nihongi, Kikuo Umegaki, Hiroki Shirato
    55th ASTRO Annual Meeting  2013/09  Atlanta
  • Simulation of spot scanning proton-beam therapy for moving targets - using organ motion log data gathered with the RTRT system  [Not invited]
    S. Shimizu, T. Matsuura, N. Katoh, R. Kinoshita, S. Onodera, R. Onimaru, N. Miyamoto, C. Toramatsu, S. Takao, H. Nihongi, R. Fujimoto, Y. Nagamine, M. Umezawa, K. Hiramoto, K. Umegaki, H. Shirato
    PTCOG 52  2013/06  Germany
  • Baseline shift of intrafractional lung tumor motion in the real-time tumor-tracking radiotherapy  [Not invited]
    Seishin Takao, Shinichi Shimizu, Naoki Miyamoto, Taeko Matsuura, Chie Toramatsu, Hideaki Nihongi, Kikuo Umegaki, Hiroki Shirato
    PTCOG 52  2013/06  Germany
  • Development of the device for Spot-scanning proton irradiation to shallow seated tumor  [Not invited]
    Chie Toramatsu, Rikiya Onimaru, Shinichi Shimizu, Taeko Matsuura, Naoki Miyamoto, Rumiko Kinoshita, Seishin Takao, Hideaki Nihongi, Kikuo Umegaki, Hiroki Shirato, Rintaro Fujimoto, Shunsuke Hirayama, Yusuke Fujii, Taisuke Takayanagi, Masumi Umezasa, Koji Matsuda, Yoshihiko Nagamine
    PTCOG 52  2013/06  Germany
  • Real-time tumor-tracking radiotherapy system with mono X-ray fluoroscopy  [Not invited]
    Naoki Miyamoto, Masayori Ishikawa, Kenneth Sutherland, Ryusuke Suzuki, Taeko Matsuura, Seishin Takao, Chie Toramatsu, Hideaki Nihongi, Shinichi Shimizu, Kikuo Umegaki, Hiroki Shirato
    第105回医学物理学会  2013/04  横浜
  • A study on a gated proton spot-scanning beam therapy integrated with a real-time tumor-monitoring: an initial phantom study using patient tumor trajectory data  [Not invited]
    Taeko Matsuura, Naoki Miyamoto, Shinichi Shimizu, Yusuke Fujii, Masumi Umezawa, Seishin Takao, Hideaki Nihongi, Chie Toramatsu, Kikuo Umegaki, Hiroki Shirato
    第105回医学物理学会  2013/04  横浜
  • 照射中と4DCT撮影時の肺内マーカ移動の比較  [Not invited]
    原田慶一, 加藤徳男, 鈴木隆介, 井上哲也, 鬼丸力也, 清水伸一, 宮本直樹, 石川正純, 白土博樹
    第26回日本高精度放射線外部照射研究会  2013/02  京都
  • Progress report on collaborative development activities in improvement of spot-scanning proton therapy system Simulation of spot-scanning proton-beam therapy to the moving target using organ motion log-data obtained by an RTRT system  [Not invited]
    Chie Toramatsu, Rintaro Fujimoto, Rikiya Onimaru, Shinichi Shimizu, Taeko Matsuura, Naoki Miyamoto, Rumiko Kinoshita, Seishin Takao, Hideaki Nihongi, Kikuo Umegaki, Hiroki Shirato, Shunsuke Hirayama, Yusuke Fujii, Taisuke Takayanagi, Masumi Umezawa, Koji Matsuda, Yoshihiko Nagamine
    Third International Conference on Real-time Tumor-tracking Radiation Therapy with 4D Molecular Imaging Technique  2013/02  Sapporo
  • Simulation of spot-scanning proton-beam therapy to the moving target using organ motion log-data obtained by an RTRT system  [Not invited]
    Shinichi Shimizu, Taeko Matsuura, Norio Katoh, Rumiko Kinoshita, Shunsuke Onodera, Rikiya Onimaru, Naoki Miyamoto, Chie Toramatsu, Seishin Takao, Hideaki Nihongi, Rintaro Fujimoto, Yoshihiko Nagamine, Masumi Umezawa, Kazuo Hiramoto, Kikuo Umegaki, Hiroki Shirato
    Third International Conference on Real-time Tumor-tracking Radiation Therapy with 4D Molecular Imaging Technique  2013/02  Sapporo
  • A study on a gated proton spot-scanning beam therapy integrated with a real-time tumor-monitoring: an initial phantom study using patient tumor trajectory data  [Not invited]
    Taeko Matsuura, Naoki Miyamoto, Shinichi Shimizu, Yusuke Fujii, Masumi Umezawa, Seishin Takao, Hideaki Nihongi, Chie Toramatsu, Kenneth Sutherland, Kikuo Umegaki, Hiroki Shirato
    Third International Conference on Real-time Tumor-tracking Radiation Therapy with 4D Molecular Imaging Technique  2013/02  Sapporo
  • Preparation of Manuals for Treatment Planning at Hokkaido University  [Not invited]
    Nihongi H, Toramatsu C, Matsuura T, Takao S, Miyamoto N, Umegaki K, Shimizu S, Kinoshita R, Onodera S, Shirato H
    Third International Conference on Real-time Tumor-tracking Radiation Therapy with 4D Molecular Imaging Technique  2013/02  Sapporo
  • Development of dynamic phantom for safety management in four-dimensional radiotherapy  [Not invited]
    Naoki Miyamoto, Yuichi Hirata, Ryusuke Suzuki, Chie Toramatsu, Satoru Utsunomiya, Mitsuhiro Nakamura, Yuki Miyabe, Teiji Nishio, Takashi Kozuka, Shuji Kaneko, Takashi Mizowaki, Shinichic Shimizu, Masayori Ishikawa, Masahiro Hiraoka, Hiroki Shirato
    Third International Conference on Real-time Tumor-tracking Radiation Therapy with 4D Molecular Imaging Technique  2013/02  Sapporo
  • The Role of Spot Scanning Proton Therapy in the Treatment of Large tumors:A Comparative Planning Study of Hepatocellular Carcinoma  [Not invited]
    Toramatsu C, Katoh N, Shimizu S, Nihongi H, Matsuura T, Takao S, Miyamoto N, Kinoshita R, Umegaki K, Shirato H
    54th ASTRO Annual Meeting  2012/10  Boston
  • 北海道大学における分子追跡陽子線治療装置  [Not invited]
    二本木英明, 寅松千枝, 松浦妙子, 高尾聖心, 宮本直樹, 梅垣菊男, 清水伸一, 木下留美子, 小野寺俊輔, 白土博樹, 松田浩二, 梅澤真澄, 平本和夫
    第9回日本粒子線治療臨床研究会  2012/10  指宿
  • 一方向X線透視による低被曝・省スペース型動体追跡装置の開発  [Not invited]
    宮本直樹, 石川正純, Kenneth Sutherland, 鈴木隆介, 松浦妙子, 高尾聖心, 寅松千枝, 二本木英明, 清水伸一, 梅垣菊男, 白土博樹
    第104回医学物理学会  2012/09  つくば
  • 陽子線治療における最適な治療ワークフローの検討  [Not invited]
    高尾聖心, 松浦妙子, 寅松千枝, 二本木英明, 宮本直樹, 清水伸一, 木下留美子, 松田浩二, 木谷貴雄, 梅垣菊男, 白土博樹
    第104回医学物理学会  2012/09  つくば
  • 複数体内マーカを利用した腫瘍の呼吸性運動の詳細解析とゲーティング照射の有用性の検討  [Not invited]
    大友可奈子, 宮本直樹, 石川正純, Kenneth Sutherland, 鈴木隆介, 松浦妙子, 鬼丸力也, 清水伸一, 梅垣菊男, 白土博樹
    第104回医学物理学会  2012/09  つくば
  • Accelerated Computation of Digitally Reconstructed Radiographs with a GPU  [Not invited]
    Kenneth Sutherland, 宮本直樹, 石川正純, 鈴木隆介, 白土博樹
    第104回医学物理学会  2012/09  つくば
  • 陽子線スキャニング照射における体内マーカーによる線量遮蔽のTCPを用いた評価  [Not invited]
    前田憲一郎, 松浦妙子, Kenneth Sutherland, 高尾聖心, 寅松千枝, 二本木英明, 宮本直樹, 清水伸一, 石川正純, 梅垣菊男, 白土博樹
    第104回医学物理学会  2012/09  つくば
  • Development of The Compact Proton Beam Therapy System Dedicated to Spot Scanning with Real-time Tumor-tracking Technology  [Not invited]
    Umezawa M, Fujimoto R, Umekawa T, Fujii Y, Takayanagi T, Ebina F, Aoki T, Nagamine Y, Matsuda K, Hiramoto K, Matsuura T, Miyamoto N, Nihongi H, Umegaki K, iShirato H
    22nd International Conference on the Application of Accelerators in Research and Industry  2012/08  Texas
  • Motion adaptive image filter for low dose X-ray fluoroscopy in real-time tumor-tracking radiotherapy system  [Not invited]
    Naoki Miyamoto, Masayori Ishikawa, Kenneth Sutherland, Ryusuke Suzuki, Taeko Matsuura, Seishin Takao, Chie Toramatsu, Hideaki Nihongi, Shinichi Shimizu, Rikiya Onimaru, Kikuo Umegaki, Hiroki Shirato
    AAPM 54th Annual Meeting,  2012/07  Charlotte
  • Biological Effect of Dose Shadowing by Fiducial Markers in Spot Scanning Proton Therapy with a Limited Number of Fields  [Not invited]
    T Matsuura, K Maeda, K Sutherland, T Takayanagi, S Shimizu, S Takao, H Nihongi, C Toramatsu, N Miyamoto, Y Nagamine, R Fujimoto, K Umegaki, H Shirato
    AAPM 54th Annual Meeting,  2012/07  Charlotte
  • Dosimetric Study for Shallow-Seated Tumor Using Passive/active Scanning Proton Beam  [Not invited]
    C Toramatsu, T Matsuura, H Nihongi, S Takao, N Miyamoto, S Shimizu, R Kinoshita, K Umegaki, H Shirato
    AAPM 54th Annual Meeting,  2012/07  Charlotte
  • DEVELOPMENT OF DYNAMIC PHANTOM FOR QUALITY CONTROL IN FOUR-DIMENSIONAL RADIOTHERAPY  [Not invited]
    Naoki Miyamoto, Yuichi Hirata, Kenji Naoe, Ryusuke Suzuki, Chie Toramatsu, Shinichi Shimizu, Yuki Miyabe, Shuji Kaneko, Teiji Nishio, Masayori Ishikawa, Masahiro Hiraoka, Hiroki Shirato
    31th Sapporo International Cancer Symposium  2012/07  Sapporo
  • Spot-scanning Proton Therapy for Mobile Tumors -Reduction of Interplay Effect by Gating Technique-  [Not invited]
    Taeko Matsuura, Naoki Miyamoto, Shinichi Shimizu, Chie Toramatsu, Seishin Takao, Hideaki Nihongi, Rumiko Kinoshita, Rikiya Onimaru, Masumi Umezawa, Rintaro Fujimoto, Koji Matsuda, Kikuo Umegaki, Hiroki Shirato
    31th Sapporo International Cancer Symposium  2012/07  Sapporo
  • Usability of Treatment Procedure in Spot Scanning Proton Beam Therapy System  [Not invited]
    Seishin Takao, Shinichi Shimizu, Taeko Matsuura, Chie Toramatsu, Hideaki Nihongi, Naoki Miyamoto, Koji Matsuda, Toru Umekawa, Kikuo Umegaki, Hiroki Shirato
    31th Sapporo International Cancer Symposium  2012/07  Sapporo
  • A Comparative Planning Study of Large abdominal tumors _ The role of Proton Therapy in the Treatment of Large Irradiation Volumes  [Not invited]
    Chie Toramatsu, Hideaki Nihongi, Taeko Matsuura, Seishin Takao, Naoki Miyamoto, Kikuo Umegaki, Norio Katoh, Shinichi Shimizu, Rumiko Kinoshita, Hiroki Shirato
    31th Sapporo International Cancer Symposium  2012/07  Sapporo
  • PREPARATION FOR A PROTON SCANNING TREATMENT PLANNING SYSTEM AT HOKKDAIDO UNIVERSITY  [Not invited]
    Hideaki Nihongi, Chie Toramatsu, Taeko Matsuura, Seishin Takao, Naoki Miyamoto, Kikuo Umegaki, Shinichi Shimizu, Rumiko Kinoshita, Shunsuke Onodera, Hiroki Shirato
    31th Sapporo International Cancer Symposium  2012/07  Sapporo
  • Web-based database system for inter-fractional organ motion estimated by real-time tumor-tracking radiotherapy system  [Not invited]
    Ryusuke Suzuki, Masayori Ishikawa, Naoki Miyamoto, Kenneth Lee Sutherland, Taeko Matsuura, Seishin Takao, Chie Toramatsu, Hideaki Nihongi, Shinichi Shimizu, Rikiya Onimaru, Hiroki Shirato
    31th Sapporo International Cancer Symposium  2012/07  Sapporo
  • Development of international standardization of Four Dimensional Radiotherapy  [Not invited]
    Yuichi Hirata, Takashi Kozuka, Kenji Naoe, Naoki Miyamoto, Chie Toramatsu, Ryusuke Suzuki, Shinichi Shimizu, Yuki Miyabe, Shuji Kaneko, Takashi Mizowaki, Masahiro Hiraoka, Mitsuhiro Yoshida, Kazuo Hiramoto, Tsuyoshi Sasagawa, Hiroki Shirato
    31th Sapporo International Cancer Symposium  2012/07  Sapporo
  • Motion adaptive image filter for low dose X-ray fluoroscopy in real-time tumor-tracking radiotherapy system  [Not invited]
    Naoki Miyamoto, Kenneth Sutherland, Ryusuke Suzuki, Taeko Matsuura, Chie Toramatsu, Seishin Takao, Hideaki Nihongi, Rumiko Kinoshita, Shinichi Shimizu, Rikiya Onimaru, Kikuo Umegaki, Hiroki Shirato, Masayori Ishikawa
    The 6th S. Takahashi Memorial Symposium & The 6th Japan-US Cancer Therapy International Joint Symposium  2012/07  Hiroshima
  • Development of the Compact Proton Beam Therapy System Dedicated to Spot Scanning with Real Time Tumor Tracking Technology  [Not invited]
    Yusuke Fujii, Futaro Ebina, Rintaro Fujimoto, Masumi Umezawa, Kazuo Hiramoto, Yoshihiko Nagamine, Koji Matsuda, Taeko Matsuura, Naoki Miyamoto, Hideaki Nihongi, Kikuo Umegaki, Hiroki Shirato
    The 6th S. Takahashi Memorial Symposium & The 6th Japan-US Cancer Therapy International Joint Symposium  2012/07  Hiroshima
  • Development of Spot Scanning Proton Beam Therapy System with Real-Time Tumor-Tracking Technology  [Not invited]
    Hiroki Shirato, Kikuo Umegaki, Shinichi Shimizu, Taeko Matsuura, Naoki Miyamoto, Chie Toramatsu, Seishin Takao, Hideaki Nihongi, Kazuo Hiramoto, Fumito Nakamura
    PTCOG 51  2012/05  Seoul, Korea
  • On reduction of irradiation time in Real-time Tumor-tracking Proton beam Therapy  [Not invited]
    Taeko Matsuura, Naoki Miyamoto, Shinichi Shimizu, Chie Toramatsu, Seishin Takao, Hideaki Nihongi, Masumi Umezawa, Yusuke Fujii, Kikuo Umegaki, Hiroki Shirato
    PTCOG 51  2012/05  Seoul, Korea
  • Design of treatment workflow in proton therapy system with compact rotating gantry  [Not invited]
    Seishin Takao, Shinichi Shimizu, Chie Toramatsu, Taeko Matsuura, Hideaki Nihongi, Naoki Miyamoto, Koji Matsuda, Toru Umekawa, Kikuo Umegaki, Hiroki Shirato
    PTCOG 51  2012/05  Seoul, Korea
  • A Comparative Planning Study of Large abdominal tumors  [Not invited]
    Toramatsu C, Katoh N, Shimizu S, Nihongi H, Matsuura T, Takao S, Miyamoto N, Kinoshita R, Umegaki K, Shirato H
    PTCOG 51  2012/05  Seoul, Korea
  • Performance and dose distribution evaluation of scanning dedicated compact proton therapy system by treatment planning simulation  [Not invited]
    Hideaki Nihongi, Chie Toramatsu, Taeko Matsuura, Seishin Takao, Naoki Miyamoto, Kikuo Umegaki, Shinichi Shimizu, Rumiko Kinoshita, Hiroki Shirato
    PTCOG 51  2012/05  Seoul, Korea
  • Accuracy Verification of the Marker Tracking System Mounted on the Rotating Gantry  [Not invited]
    Toru Umekawa, Takao Kidani, Toshie Sasaki, Yoshihiko Nagamine, Masumi Umezawa, Kazuo Hiramoto, Naoki Miyamoto, Seishin Takao, Shinichi Shimizu, Kikuo Umegaki, Hiroki Shirato
    PTCOG 51  2012/05  Seoul, Korea
  • Dose distribution analysis of moving target irradiated by proton spot scanning combined with gating technique  [Not invited]
    Yusuke Fujii, Toru Umekawa, Rintaro Fujimoto, Yoshihiko Nagamine, Masumi Umezawa, Kazuo Hiramoto, Hiroshi Akiyama, Naoki Miyamoto, Taeko Matsuura, Kikuo Umegaki, Hiroki Shirato
    PTCOG 51  2012/05  Seoul, Korea
  • 高精度X線治療機器の開発  [Invited]
    宮本直樹
    第51回日本生体医工学会大会  2012/05  福岡
  • 治療計画シミュレーションによる陽子線スキャニング専用機の線量分布の検証  [Not invited]
    二本木英明, 寅松千枝, 松浦妙子, 高尾聖心, 宮本直樹, 梅垣菊男, 清水伸一, 木下留美子, 白土博樹
    第103回医学物理学会  2012/04  横浜
  • フリームービング条件下における時計遺伝子発現の新規非侵襲 4D イメージング  [Not invited]
    浜田俊幸, 本間さと, Kenneth Sutherland, 宮本直樹, 石川正純, 白土博樹, 本間研一
    第89回日本生理学会大会  2012/03  長野
  • IGRT and Real time 4DRT with RTRT  [Not invited]
    Shimizu S, Onimaru R, Kinoshita R, Kato N, Inoue T, Nishioka K, Matsuura T, Miyamoto N, Kenneth Sutherland, Toramatsu C, Takao S, Nihongi H, Umegaki K, Shirato H
    Second International Conference on Real-time Tumor-tracking Radiation Therapy with 4D Molecular Imaging Technique  2012/02  Kyoto
  • Real-time Tumor-tracking Radiotherapy (RTRT) for Non-smoll Cell Lung Cancer(NSCLC)  [Not invited]
    Onimaru R, Shimizu S, Kinoshita R, Kato N, Inoue T, Nishioka K, Matsuura T, Miyamoto N, Kenneth Sutherland, Toramatsu C, Takao S, Nihongi H, Umegaki K, Shirato H
    Second International Conference on Real-time Tumor-tracking Radiation Therapy with 4D Molecular Imaging Technique  2012/02  Kyoto
  • Progress Report on Collaborative Research Activities in RTPT I-Synchrotron-based Compact Proton Therapy System Dedicated to Spot Scanning-  [Not invited]
    Umezawa M, Fujimoto R, Umekawa T, Fujii Y, Takayanagi T, Ebina F, Aoki T, Nagamine Y, Matsuda K, Hiramoto K, Matsuura T, Miyamoto N, Nihongi H, Umegaki K, Shirato H
    Second International Conference on Real-time Tumor-tracking Radiation Therapy with 4D Molecular Imaging Technique  2012/02  Kyoto
  • Progress Report on Collaborative Research Activities in RTPT II -Integration of RTRT and Spot Scanning Proton Therapy-  [Not invited]
    Matsuura T, Miyamoto N, Kenneth Sutherland, Toramatsu C, Takao S, Nihongi H, Shimizu S, Kinoshita R, Onimaru R, Umezawa M, Fujimoto R, Hiramoto K, Nagamine Y, Matsuda K, Umegaki K, Shirato H
    Second International Conference on Real-time Tumor-tracking Radiation Therapy with 4D Molecular Imaging Technique  2012/02  Kyoto
  • 分子イメージング画像を用いた高精度画像誘導放射線治療  [Not invited]
    石川正純, 山口哲, 棚邊哲史, 山中琢, 宮本直樹, 鈴木隆介, Kenneth Sutherland, 加藤徳雄, 白土博樹
    第24回日本高精度放射線外部照射研究会  2012/02  横浜
  • Improvement of tracking accuracy and stability by recursive image processing in real-time tumor-tracking radiotherapy system  [Not invited]
    Naoki Miyamoto, Kenneth Sutherland, Ryusuke Suzuki, Taeko Matsuura, Chie Toramatsu, Seishin Takao, Hideaki Nihongi, Rumiko Kinoshita, Shinichi Shimizu, Rikiya Onimaru, Kikuo Umegaki, Hiroki Shirato, Masayori Ishikawa
    SPIE Medical Imaging  2012/02  San Diego
  • マルチベンダ環境における放射線治療情報統合・照合システムの構築  [Not invited]
    鈴木隆介, 安田耕一, 藤田勝久, 辻真太郎, 宮崎智夫, 石川正純, 宮本直樹, 望月健太, 清水伸一, 白土博樹
    日本放射線腫瘍学会  2011/11  神戸
  • 複数体内マーカを利用した腫瘍の呼吸性運動の詳細解析とゲーティング照射の有用性の検討  [Not invited]
    大友可奈子, 宮本直樹, 石川正純, Kenneth Sutherland, 鈴木隆介, 松浦妙子, 鬼丸力也, 清水伸一, 梅垣菊男, 白土博樹
    日本放射線腫瘍学会  2011/11  神戸
  • 線量分布検証における誤差の要因と判定基準に関する考察  [Not invited]
    石川正純, Kenneth Sutherland, 峯村俊行, 棚邊哲史, 遠山尚紀, 成田雄一郎, 西尾禎治, 宮本直樹, 鈴木隆介, 石倉聡
    日本放射線腫瘍学会  2011/11  神戸
  • Notable achievements and future vision of the real-time tumor-tracking radiotherapy system  [Invited]
    Naoki Miyamoto
    6-th JKMP 11-th AOCMP  2011/09  Fukuoka
  • Respiratory motion of lung tumor determined by trajectory data of multiple fiducial markers in real-time tumor-tracking radiotherapy  [Not invited]
    Naoki Miyamoto, Kanako Otomo, Kenneth Sutherland, Ryusuke Suzuki, Taeko Matsuura, Chie Toramatsu, Seishin Tako, Hideaki Nihongi, Rumiko Kinoshita, Shinichi Shimizu, Rikiya Onimaru, Masayori Ishikawa, Kikuo Umegaki, Hiroki Shirato
    6-th JKMP 11-th AOCMP  2011/09  Fukuoka
  • The initial evaluation of irradiation time and motion dose errors in Real-time Tumor-Tracking Proton Beam Therapy  [Not invited]
    Taeko Matsuura, Naoki Miyamoto, Kenneth Sutherland, Chie Toramatsu, Seishin Tako, Hideaki Nihongi, Shinichi Shimizu, Rumiko Kinoshita, Rikiya Onimaru, Yusuke Fujii, Taisuke Takayanagi, Rintaro Fujimoto, Yoshihiko Nagamine, Kikuo Umegaki, Hiroki Shirato
    6-th JKMP 11-th AOCMP  2011/09  Fukuoka
  • A feasibility study on molecular-guided radiotherapy using a parallel plane PET  [Not invited]
    Masayori Ishikawa, Satoshi Yamaguchi, Satoshi Tanabe, Kenneth Sutherland, Naoki Miyamoto, Ryusuke Suzuki, Hiroki Shirato
    6-th JKMP 11-th AOCMP  2011/09  Fukuoka
  • 陽子線治療計画装置とX線治療計画の環境構築  [Not invited]
    清水伸一, 木下留美子, 鬼丸力也, 白土博樹, 二本木英明, 寅松千枝, 松浦妙子, 高尾聖心, 宮本直樹, 梅垣菊男
    第8回日本粒子線治療臨床研究会  2011/09  群馬
  • 分子追跡陽子線治療装置の開発  [Not invited]
    梅垣菊男, 寅松千枝, 松浦妙子, 高尾聖心, 二本木英明, 宮本直樹, 清水伸一, 木下留美子, 鬼丸力也, 白土博樹
    第8回日本粒子線治療臨床研究会  2011/09  群馬
  • 複数マーカを利用したゲーティング照射における照射効率に関する検討  [Not invited]
    大友可奈子, 宮本直樹, 石川正純, Kenneth Sutherland, 鈴木隆介, Gerard Bengua, 松浦妙子, 鬼丸力也, 清水伸一, 白土博樹
    第101回日本医学物理学会  2011/05  Web
  • 陽子線スキャニングビームにおける偏向磁場による線量分布の形状変化に関する考察  [Not invited]
    前田憲一郎, Kenneth Sutherland, 松浦妙子, 石川正純, 清水伸一, 鬼丸力也, 木下留美子, Gerard Bengua, 宮本直樹, 鈴木隆介, 白土博樹
    第101回日本医学物理学会  2011/05  Web
  • 対向型PET装置を用いた3次元分子追跡装置の基礎検討  [Not invited]
    右近直之, 石川正純, 棚邊哲史, 山口哲, 宮本直樹, Gerard Bengua, 志賀哲, 玉木長良, 白土博樹
    第101回日本医学物理学会  2011/05  Web
  • スポット陽子線照射における体内マーカーの問題点〜前立腺位置合わせと飛程変化に関する考察〜  [Not invited]
    山中琢, 松浦妙子, 石川正純, Kenneth Sutherland, 清水伸一, 鬼丸力也, 木下留美子, Gerard Bengua, 宮本直樹, 鈴木隆介, 白土博樹
    第101回日本医学物理学会  2011/05  Web
  • Real-time tumor-tracking, spot scanning proton beam therapy  [Not invited]
    Shirato H, Shimizu S, Onimaru R, Kinoshita R, Umegaki K, Matsuura T, Miyamoto N, Ishikawa M, Hiramoto K, Nakamura
    PTCOG 50  2011/05  Philadelphia
  • Dose distribution analysis of moving target irradiated by proton spot scanning combined with gating technique  [Not invited]
    Yusuke Fujii, Toru Umekawa, Rintaro Fujimoto, Yoshihiko Nagamine, Masumi Umezawa, Kazuo Hiramoto, Hiroshi Akiyama, Naoki Miyamoto, Taeko Matsuura, Kikuo Umegaki, Hiroki Shirato
    PTCOG 50  2011/05  Philadelphia
  • Improvement of Tracking Accuracy and Stability with Utilizing a Color Image Intensifier in Real-time Tumor-tracking Radiotherapy System  [Not invited]
    Naoki Miyamoto, Masayori Ishikawa, Kenneth Sutherland, Gerard Bengua, Ryusuke Suzuki, Hiroki Shirato
    52nd ASTRO Annual Meeting  2010/10  San Diego
  • Conceptual Design of PET-linac System for Molecular-guided Radiotherapy  [Not invited]
    Masayori Ishikawa, Kenneth Sutherland, Gerard Bengua, Ryusuke Suzuki, Naoki Miyamoto, Norio Katoh, Shinichi Shimizu, Rikiya Onimaru, Hidefumi Aoyama, Hiroki Shirato
    52nd ASTRO Annual Meeting  2010/10  San Diego
  • Feasibility Study on Molecular-imaging Based Tracking System for Lung Cancer Treatment  [Not invited]
    Satoshi Tanabe, Masayori Ishikawa, Kenneth Sutherland, Gerard Bengua, Ryusuke Suzuki, Naoki Miyamoto, Norio Katoh, Shinichi Shimizu, Rikiya Onimaru, Hidefumi Aoyama, Hiroki Shirato
    52nd ASTRO Annual Meeting  2010/10  San Diego
  • 動体追跡放射線治療における画像処理を応用したマーカ追跡精度の向上  [Not invited]
    宮本直樹, 石川正純, Kenneth Sutherland、Gerard Bengua, 鈴木隆介, 白土博樹
    第100 回日本医学物理学会  2010/09  東京
  • 動体追跡データに基づく腫瘍および周辺臓器のDVH 線量解析-JCOG0702 プロトコルへの適用-  [Not invited]
    石川正純, 宮本直樹, Kenneth Sutherland、Gerard Bengua, 鈴木隆介, 白土博樹
    第100 回日本医学物理学会  2010/09  東京
  • 新規ライナック導入に伴うコミッショニング手順に関する報告  [Not invited]
    鈴木隆介, 石川正純, 宮本直樹, Gerard Bengua, Kenneth Sutherland, 白土博樹
    第99 回日本医学物理学会  2010/04  横浜
  • 光ファイバ線量計を用いた高エネルギーγ線線量測定におけるチェレンコフ光除去方法の検討  [Not invited]
    太田真緒, 石川正純, 江口奈弥帆, Gerard Bengua, 鈴木隆介, 宮本直樹, Kenneth Sutherland, 白土博樹
    第99 回日本医学物理学会  2010/04  横浜
  • Basics of real-time tumor tracking radiothrepy (RTRT) and development of a next generation RTRT  [Invited]
    Naoki Miyamoto, Masayori Ishikawa, Kenneth Sutherland, Bengua Gerard, Ryusuke Suzuki, Shinichi Shimizu, Rikiya Onimaru, Hidefumi Aoyama, Hiroki Shirato
    5th International Symposium on Medical, Bio- and Nano-Electronics  2010/02  Sendai
  • Can the real-time tumor-tracking radiotherapy give the planned dose to the tumor? DVH analysis based on measured real-time tracking data  [Not invited]
    Masayori Ishikawa, Kenneth Sutherland, Gerard Bengua, Ryusuke Suzuki, Naoki Miyamoto, Norio Katoh, Shinichi Shimizu, Rikiya Onimaru, Hidefumi Aoyama, Hiroki Shirato
    51st ASTRO Annual Meeting  2009/10  Chicago
  • 動体追跡装置を用いた肺定位照射時の投与線量解析―動体追跡データに基づくDVH解析―  [Not invited]
    石川正純, Kenneth Sutherland, 宮本直樹, Gerard Bengua, 清水伸一, 青山英史, 鬼丸力也, 木村傑, 白土博樹
    日本放射線腫瘍学会第22回学術大会  2009/09
  • 動体追跡放射線治療におけるX線透視条件の最適化  [Not invited]
    宮本直樹, 石川正純, Kenneth Sutherland、Gerard Bengua, 清水伸一, 青山英史, 鬼丸力也, 木村傑, 白土博樹
    第98 回日本医学物理学会  2009/09
  • 動体追跡装置におけるコントラスト-ノイズ比(CNR)の測定方法の検討  [Not invited]
    木村傑, 宮本直樹, 石川正純, Kenneth Sutherland、Gerard Bengua, 清水伸一, 青山英史, 鬼丸力也, 白土博樹
    第98 回日本医学物理学会  2009/09
  • 体内臓器同期照射を目的とした次世代動体追跡装置の開発〜複数マーカ追跡への挑戦〜  [Not invited]
    石川正純, Kenneth Sutherland, 宮本直樹, Gerard Bengua, 清水伸一, 青山英史, 鬼丸力也, 木村傑, 白土博樹
    第97回日本医学物理学会学術大会  2009/04  横浜
  • 体内臓器同期照射を目的とした次世代動体追跡装置の開発〜透視画像の歪みと位置計算誤差〜  [Not invited]
    宮本直樹, 石川正純, Kenneth Sutherland、Gerard Bengua, 清水伸一, 青山英史, 鬼丸力也, 木村傑, 白土博樹
    第97回日本医学物理学会学術大会  2009/04  横浜
  • 体内臓器同期照射を目的とした次世代動体追跡装置の開発〜デジタル画像機器としての定量的評価〜  [Not invited]
    木村傑, 石川正純, Kenneth Sutherland, 宮本直樹, Gerard Bengua, 鈴木隆介, 清水伸一, 青山英史, 鬼丸力也, 白土博樹
    第97回日本医学物理学会学術大会  2009/04  横浜
  • 対向型PET装置を用いた患者位置確認システムの開発−GEANT4基礎シミュレーション−  [Not invited]
    山口哲, 石川正純, 棚邊哲史, Gerard Bengua, Kenneth Sutherland, 宮本直樹, 鈴木隆介, 青山英史, 武島嗣英, 白土 博樹
    第97回日本医学物理学会学術大会  2009/04  横浜
  • 対向型PET装置を用いた分子イメージング動体追跡装置の開発〜18F点線源を用いた追跡精度の検証〜  [Not invited]
    棚邊哲史, 石川正純, 山口哲, 武島嗣英, 鈴木隆介, 宮本直樹, 加藤徳雄, 清水伸一, 鬼丸力也, 白土博樹
    第97回日本医学物理学会学術大会  2009/04  横浜
  • 次世代動体追跡装置の開発〜位置計算誤差の評価〜  [Not invited]
    宮本直樹, 石川正純, Gerard Bengua, 鈴木隆介, 木村傑, Kenneth Sutherland, 清水伸一, 青山英史, 鬼丸力也, 白土博樹
    第19回日本高精度放射線外部照射研究会  2009/01  名古屋
  • 小型加速器中性子源を用いた中性子共鳴吸収断層撮像  [Not invited]
    加美山隆, 宮本直樹, 富岡智, 小崎完
    日本原子力学会秋の大会  2008  高知
  • Epithermal neutron tomography with time-of-flight technique  [Not invited]
    Takashi Kamiyama, Hirotaka Sato, Naoki Miyamoto, Hirokatsu Iwasa, Yoshiaki Kiyanagi, Susumu Ikeda
    IEEE Nuclear Science Symposium and Medical Imaging Conference  2007/10  Honolulu
  • 中性子共鳴吸収分光法と計算機断層撮像法を利用した核種分布の非破壊分析  [Not invited]
    宮本直樹, 小崎完, 富岡智, 加美山隆
    日本原子力学会秋の大会  2007  北九州
  • 小型加速器を利用した中性子共鳴吸収CTによる核種分布の非破壊分析  [Not invited]
    宮本直樹, 小崎完, 富岡智, 加美山隆
    日本非破壊検査協会秋季大会,  2007  札幌
  • Study of Neutron Tomography using Neutron Resonance Absorption  [Not invited]
    Takashi Kamiyama, Hirotaka Sato, Naoki Miyamoto, Hirokatsu Iwasa, Yoshiaki Kiyanagi, Susumu Ikeda
    The 18th Meeting of the International Collaboration on Advanced Neutron Sources  2007  Beijing
  • 光変調材料を用いた赤外線ホログラフィー  [Not invited]
    宮本直樹, 西山修輔, 富岡智, 榎戸武揚
    第6 回核融合エネルギー連合講演会  2006  富山
  • 中赤外光計測を目的とした熱吸収型可視位相変調素子の空間分解能  [Not invited]
    富岡智, 宮本直樹, 西山修輔, 榎戸武揚
    第6 回核融合エネルギー連合講演会  2006  富山
  • ニトロアニソールを用いた赤外線ホログラフィによる画像再生と計測への応用  [Not invited]
    宮本直樹, 西山修輔, 富岡智, 榎戸武揚
    高速度撮影とフォトニクスに関する総合シンポジウム  2005  市ヶ谷
  • Infrared phase-shifting interferometer using the nitroanisole as a two-dimensional detector  [Not invited]
    Naoki Miyamoto, Shusuke Nisiyama, Satoshi Tomioka, Takeaki Enoto
    SPIE International Symposium on Optomechatronic Technologies, Optomechatronic Sensors and Instrumentation  2005  Sapporo
  • ニトロアニソールを用いた赤外位相情報の可視化  [Not invited]
    宮本直樹, 西山修輔, 富岡智, 榎戸武揚
    第65 回応用物理学会学術講演会  2004  仙台

Association Memberships

  • JAPANESE SOCIETY FOR RADIATION ONCOLOGY   THE JAPAN SOCIETY OF APPLIED PHYSICS   JAPAN SOCIETY OF MEDICAL PHYSICS   ATOMIC ENERGY SOCIETY OF JAPAN   

Research Projects

  • 日本学術振興会:科学研究費助成事業
    Date (from‐to) : 2024/04 -2028/03 
    Author : 松浦 妙子, 宮本 直樹, 打浪 雄介, 高尾 聖心, 陳 叶, 橋本 孝之, 栗山 靖敏, 加藤 徳雄
  • 日本学術振興会:科学研究費助成事業 基盤研究(B)
    Date (from‐to) : 2022/04 -2025/03 
    Author : 青山 英史, 鈴木 隆介, 宮本 直樹, 高尾 聖心, 金平 孝博, 橋本 孝之, 小橋 啓司, 西岡 健太郎, 田口 大志
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)
    Date (from‐to) : 2022/04 -2025/03 
    Author : 富岡 智, 山内 有二, 宮本 直樹, 松本 裕
  • 日本学術振興会:科学研究費助成事業 基盤研究(B)
    Date (from‐to) : 2021/04 -2025/03 
    Author : 松浦 妙子, 宮本 直樹, 高尾 聖心, 栗山 靖敏
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research
    Date (from‐to) : 2019/04 -2024/03 
    Author : 白土 博樹, 宮本 直樹, 平田 雄一, 田中 創大, 高尾 聖心, 梅垣 菊男, 茶本 健司, 清水 伸一, Nam JinMin, 小野寺 康仁, 松浦 妙子
     
    ① 2019年度に決定した、短時間(0.1秒以下)でエネルギー変更可能な小型加速器の基本設計に基づき、小型加速器の要素技術の設計を行い、短時間(0.1秒以下)でエネルギー変更を可能とする回転ガントリーを含む照射・輸送系の磁場制御設計を行った。 ② 陽子からヘリウムに短時間で加速粒子を変更できる混合加速方式を検討、2023年度に制作開始するべく、陽子線CTの機器としての仕様を検討した。 ③ 陽子線CT値-ヘリウムSPR変換プロセスと、X線CT値利用時の精度を比較し、高エネルギー陽子線CTに必要な要素機器と制御方式の仕様を明確化した。 ④ 高エネルギー陽子線ビームを照射する場合に、ビームの人体への入射方向を意図的に偏心させ、ノズルの外側から照射野中心に向かったビームアングルとするための加速器・照射系の検討を行った。 ⑤ PD-1阻害剤およびPD-L1阻害剤を用いて、がん細胞の制御に最適なLET、ROSとミトコンドリアの分布を計測し、放射線と阻害剤の組み合わせによる相関を検討した。T細胞のPD-1阻害に関する条件検討を行っていたところ、当初の想定に反し、がん細胞での観察と類似の条件ではT細胞の観察が困難であることが判明した。T細胞を観察した上で条件決定することが不可欠であるため、T細胞のPD-1阻害に関する条件決定のための追加検討事項として、培養条件や使用する蛍光色素の種類を複数追加し、T細胞を観察するための至適条件の検討を行った。
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research
    Date (from‐to) : 2020/04 -2023/03 
    Author : 宮本 直樹
     
    本研究では、放射線治療中に得られる2方向X線透視画像を利用し、体内マーカを利用することなく(マーカーレス)、リアルタイムに体内の3次元構造を取得するボリュームイメージング技術を開発することを目的とする。この提案技術の実現により、体内にマーカーを留置するという侵襲性のあるプロセスを無くすことができ、加えて、ボリュームイメージを得ることによる高精度な呼吸性移動対策をFLASH などの超高線量率照射を含むあらゆる照射において実施可能となる。本研究では、研究期間内に各要素技術の開発を進め、十分な質と量のデータにより精度検証を実施し、ボリュームイメージングを利用した治療ビーム照射制御の臨床的有用性を明らかにする。 2021年度は、昨年度のデジタルファントムによる画像合成精度評価に続き、実際の患者の4DCTデータによる評価を進めた。同一患者で異なる日に撮影された4DCTデータを利用し、1つの4DCTデータを変形モデリング用、残りの4DCTデータを検証に用い、モデリングの課程で得られた固有体内変形ベクトルの線形結合にもとづくボリュームイメージングにより、検証データをどこまで再現できるか評価した。合成画像の画素値と構造の再現性を評価した結果、先行研究(主にデジタルファントムでの評価)と同等の性能が得られた。したがって、放射線治療中に正確な固有値を評価することにより、標的の位置や体内構造の評価に応用できるボリュームイメージをリアルタイムで合成できると考えられ、提案手法の臨床的な実行可能性を示すことができた。
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Challenging Research (Exploratory)
    Date (from‐to) : 2018/06 -2021/03 
    Author : Miyamoto Naoki
     
    We developed a method to reconstruct 3D in vivo information in real time by using the positional information of biological surfaces and in vivo markers through modeling of in vivo deformations using pre-learning data. Using a patient's 4DCT acquired for radiotherapy, we evaluated the image synthesis accuracy of the in vivo reconstruction method developed in this project as the normalized root mean square error (NRMSE) between the ground truth image and the synthesized image. The image synthesis accuracies for the training data and the validation with motion beyond the training data were about 7% and 11%, respectively. In addition, the accuracy of tumor location evaluation was less than 1 mm. These results suggest that the accuracy is sufficient for application in radiotherapy.
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)
    Date (from‐to) : 2018/04 -2021/03 
    Author : Shimizu Shinichi
     
    In the real-time tumor tracking radiotherapy, feature point information, that is used for gating, is obtained by fluoroscopic X-ray images. There still problems exist:1.X-ray exposure from diagnostic X ray that used for gating 2.insertion of a gold marker etc. as a feature pointReduce or eliminate X-ray exposure by making the observing area through diagnostic X-rays as small as possible to acquire target movement information or establishing the method of processing gating information obtained using MRI technology without using fluoroscopy were considered to be the goal of this study. X-rays are still optimal for acquiring organ motion information within human body necessary for gating treatment in real time, but a method for limiting the range was achieved in this study. In addition, we succeeded in trying to visualize the position of organs with MRI image data without using X-rays when preparing for treatment, and there were expectations for the promotion of future research.
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)
    Date (from‐to) : 2018/04 -2021/03 
    Author : Tomioka Satoshi
     
    In order to measure the three-dimensional refractive index distribution, a coupling method of interferometer and computed tomography can be used. As the interferometer to measure delay of wavefront due to object from different incident angles, we adopted a shearing interferometer, which always satisfies interference condition during changing incident angle since the shearing interferometer does not use a reference wave. We demonstrated that interferograms obtained with the shearing interferometer are not affected by vibration caused by changing of the incident direction. In addition, we measured the three-dimensional distribution of the refractive index of the gas near the candle flame, and the reconstructed result was qualitative agreed.
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)
    Date (from‐to) : 2017/04 -2020/03 
    Author : Miyamoto Naoki
     
    In this study, we have developed the fundamental techniques to realize real-time tumor-tracking arc radiation therapy for stereotactic body radiation therapy. In order to show the clinical feasibility and effectiveness, expected treatment time and dosiemtric characteristics were evaluated. Treatment time could be reduced by the proposed treatment technique compared with the current treatment system used for real-time tumor-tracking. For the dosimetric validation, film and ion-chamber measurement with dynamic phantom was conducted. It was confirmed that the acceptable dosimetric characteristics could be achievable with the proposed technique. Dosimetric error between the measured dose and the planned dose was within 3% in ion-chamber measurement. It was suggested that the proposed method has clinical feasibility.
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research
    Date (from‐to) : 2016/04 -2020/03 
    Author : Umegaki Kikuo
     
    We have proposed a new approach of treatment plan optimization method considering the probability distribution of dose error caused by the various uncertainties in proton beam therapy. The three-dimensional dose distribution is optimized to irradiate the target tumor while sparing the normal tissue by controlling the dose for each spot with intensity modulation. We have evaluated probabilistic dose errors caused by variation of individual device performance, patient positioning error, target tumor movement under respiration, etc.. The dose error considering the anisotropy unique to the proton beam is also clarified. Beyond the conventional treatment plan concept of contouring the tumor shape and providing a uniform margin, we have constructed a robust optimization method considering the probability distribution of dose error. The method was evaluated and demonstrated using the actual proton beam therapy system.
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research
    Date (from‐to) : 2016/04 -2020/03 
    Author : Takao Seishin
     
    In this study, we have developed the therapeutic response-guided radiotherapy technique based on the quantitative estimation of changes of therapeutic response using cone-beam CT (CBCT) images. We improved the image quality of CBCT images, calculated the water equivalent thickness in spot scanning proton beam thereapy, and established a method to estimate the treatment response from changes in the water equivalent thickness.
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)
    Date (from‐to) : 2015/04 -2018/03 
    Author : Shimizu Shinichi
     
    We conduct research using 2 axis of diagnostic X-ray fluoroscope that consist real-time tumour-tracking (RTRT) system installed in a proton beam treatment gantry. With the use of the system, we conduct a research aimed constructing a 4D-IGRT radiotherapy system that can treat cancer in consideration of spatial and temporal fluctuations and also respiratory movement of tumors. Four-dimensional cone beam CT (4D-CBCT) image is obtained from the fluoroscopic image of the RTRT system. From the 4D-CBCT image group composed of a plurality of respiratory phases, a CT image that represent the same respiratory phase as the CT image used for the treatment plan is selected. We develop an advanced real time image guidance system aiming marker-less 4D-RT using selected CBCT image and its source image.
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)
    Date (from‐to) : 2015/04 -2018/03 
    Author : Tomioka Satoshi
     
    In order to monitor positions and shapes of tissue inside body during radiotherapy, we propose a computed tomographic reconstruction technique with limited projection beams. In this technique, the number of angles of projection beams measured at the time of reconstruction is small and most projection beams are lacked. The lacked projection data are replaced by the projection data measured in the past. Since the past state of body is different from that at the reconstructing time, the contribution of each projection data to the reconstructed image should be modified. By applying the weighted reconstruction algorithm to take into account the contribution of the projection data which includes past projection data, we demonstrated feasibility of low exposure monitoring.
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)
    Date (from‐to) : 2014/04 -2017/03 
    Author : Miyamoto Naoki
     
    Respiratory-gated irradiation is realized by monitoring three-dimensional location of internal fiducial marker in real-time tumor-tracking radiation therapy. Irradiation accuracy could be improved by monitoring respiratory phase in addition to the marker location. In this research, the novel algorithm of respiratory phase segmentation based on the analysis of three-dimensional trajectory data of the fiducial marker. Irradiation efficiency was evaluated from the log data retrospectively assuming that patient setup was conducted by proposed method. About 20 % of irradiation efficiency was obtained by proposed method even in the small gating windows size, +/- 1 mm. The evaluated efficiency was less than 10 % in conventional setup procedure. Hence, it is expected that the irradiation accuracy can be improved while keeping the acceptable irradiation efficiency.
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research
    Date (from‐to) : 2014/04 -2017/03 
    Author : Tanaka Masaki, KUNIMATU JUN, TAKEYA RYUJI, ISHIKAWA MASAYORI, MIYAMOTO NAOKI
     
    Experimental technique to produce focal brain lesions may provide opportunities for future research exploring mechanisms of brain function and recovery from injury. As a candidate method, we evaluated the radiosurgical technique. We also tried to develop behavioral and electrophysiological techniques to examine subcortical brain functions, and explored new methods to generate focal brain lesions. We evaluated the oculomotor behavior in monkeys up to 8 months following irradiation to the frontal eye field. In addition, we have developed several behavioral tasks and a method to record cortical potentials through epi-dural electrodes, both of which are usable to detect subcortical dysfunction. Further, we performed a feasible study of chemogenetic application to monkeys by injecting a viral vector into the cerebellum. Through these studies, we could obtain valuable information for future studies.
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)
    Date (from‐to) : 2012/04 -2015/03 
    Author : SHIMIZU Shinichi, MIYAMOTO Naoki, TAKAO Seishin
     
    Construction of a radiation therapy system which can consider respiratory movement of tumor and organs. Location variation and irradiation time are also considered using the 2 axis of X-ray fluoroscopic motion tracking device that are installed at the proton therapy within the gantry. To enable image of the cone-beam CT to get the original source image of 4-dimensional CBCT (4D-CBCT) with the use of the motion tracking device and try to develop the principle and performs imaging test by phantom. Morphological changes of the patients on the treatment couch by imaging moving tumors and organs by 4D-CBCT, the appropriateness of the treatment planning time and compare present status of tumor irradiated and the condition of the normal tissues are to be verified.
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research
    Date (from‐to) : 2012/04 -2014/03 
    Author : TANAKA Masaki, ISHIKAWA Masayori, KUNIMATU Jun, MIYAMOTO Naoki
     
    We developed a research technique to create animal model of brain lesions using the therapeutic linear accelerator. A total of four irradiations (130-150 Gy) were performed on the right frontal eye field of three Japanese monkeys. During a few weeks following irradiation, brain edema was evident in MRI and the performance of oculomotor tasks was declined; however, it recovered thereafter. For one monkey that was followed up about 8 months, the behavioral deficits reappeared in the 4th month and gradually progressed. Postmortem histological examination in two animals revealed large necrosis in the white matter and surrounding hemorrhage, but the cortical gray matter retained layers. This technique can be applied to deep brain structures in the future study. We now plan to use lower doses and will follow up longer interval.
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B)
    Date (from‐to) : 2012/04 -2014/03 
    Author : MIYAMOTO Naoki
     
    In this study, the novel monoscopic imaging system that can be utilized for gated-radiotherapy is proposed. The proposed system can reduce imaging dose due to pulsed fluoroscopy during treatment and can realize compact system. It was shown that the measurement error of the proposed technique was within acceptable level in most cases by performing the evaluations with actual marker positions and actual marker trajectories. In addition, the measurement error can be minimized by optimizing imaging geometry. As a result, the feasibility for clinical use was shown.
  • 2軸X線を用いた4D−CBCTの撮像方法構築による相互作用放射線治療の試み
    文部科学省:科学研究費補助金(基盤研究(C))
    Date (from‐to) : 2012/04 -2014/03 
    Author : 清水 伸一
     
    平成24年度は、2軸X線を用いた4次元コーンビームCT(4D-CBCT)撮像方法構築のため、北海道大学にて保有する動体追跡装置を用いて放射線治療を行ったデータのログを用いて、4D-CBCT の元画像 を撮像する際のガントリー回転速度と画像取得位置、取得可能な画像データ数、4D-CBCT 画像を作成する際に得 られる呼吸位相数のシミュレーションを行った。その結果を基に、2軸X線撮像系を実際に用いてファントム実験およびCBCT画像を計算・取得するための元画像の撮像を行った。これら元画像は、次年度以降の研究で予定している4D-CBCT画像取得のためのシミュレーション、ファントムの考案、作成および演算法最適化に用いる予定である。本研究の実行可能性について事前検討のために作成し、計算を行った基本的なシミュレーションソフトウエアの結果を基に、CBCT撮像のソフトウエアの本作成に着手した。このソフトウエアの本作成ならびに動体追跡放射線治療で取得された実際の治療ログを用いることにより、陽子線治療装置ガントリー上で取得可能な4D-CBCT 元画像の必要撮影条件の検討を行った。知的財産申請の都合上本研究に直接関与する学会・論文発表は行えなかったが、関連する基礎研究成果として骨盤部CBCT画像での臓器輪郭描出に関する検討.としてコーンビームCTに関係する研究内容を日本医学放射線学会北日本地方会にて学会発表を行った。
  • Development of 4-dimensional Cone Beam CT for precise IGRT
    Association for Nuclear Technology in Medicine:Research Grant for Nuclear Technology in Medicine
    Date (from‐to) : 2011/04 -2012/03 
    Author : Naoki Miyamoto
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B)
    Date (from‐to) : 2010 -2011 
    Author : MIYAMOTO Naoki
     
    The image processing that is combination of edge enhancement and subtraction was useful to extract the marker in the fluoroscopic image. This image processing can reduce the probability of marker lost and misidentification. And also, the imaging dose could be reduced while maintaining the equivalent image quality by applying the motion adaptive recursive image filter.
  • Pattern projection system for patient setup in radiation therapy
    Hokkaido University:Research Grant for Young Scientists
    Date (from‐to) : 2009/04 -2010/03 
    Author : Naoki Miyamoto

Industrial Property Rights



Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.