The elastic property of asteroids is one of the paramount parameters forunderstanding their physical nature. For example, the rigidity enablesus to discuss the asteroid’s shape and surface features such as cratersand boulders, leading to a better understanding of geomorphological andgeological features on small celestial bodies. The sound velocity allowsus to construct an equation of state that is the most fundamental stepto simulate the formation of small bodies numerically. Moreover, seismicwave velocities and attenuation factors are useful to account forresurfacing caused by impact-induced seismic shaking. The elasticproperty of asteroids thus plays an important role in elucidating theasteroid’s evolution and current geological processes. The Hayabusa2spacecraft brought back the rock samples from C-type asteroid (162173)Ryugu in December 2020. As a part of the initial analysis of returnedsamples, we measured the seismic wave velocity of the Ryugu samplesusing the pulse transmission method. We found that P- and S-wavevelocities of the Ryugu samples were about 2.1 km/s and 1.2 km/s,respectively. We also estimated Young’s modulus of 6.0 – 8.0 GPa. Acomparison of the derived parameters with those of carbonaceouschondrites showed that the Ryugu samples have a similar elastic propertyto the Tagish Lake meteorite, which may have come from a D-typeasteroid. Both Ryugu and Tagish Lake show a high degree of aqueousalteration and few high-temperature components such as chondrules,indicating that they formed in the outer region of the solar system.
Oxygen is the third most abundant element in the Universe and the most abundant element of the terrestrial planets. The presence of oxygen in gaseous, ice and dust phases makes oxygen isotopes important tracers of various fractionation processes to form a protoplanetary accretion disk, which are essential for understanding the evolution of building blocks for planet formation. Photodissociation of CO isotopologues in cold interstellar environments forms H2O ice with depletion of 16O component relative to the interstellar CO, but with heritage 17O/18O ratio from the interstellar CO. Dynamic evolution of protoplanetary disk generates H2O enrichments inside snowline of the disk to change from 16O-rich to 16O-poor gaseous environments. Thermodynamics during heating processes reset oxygen isotopic compositions of dust in the disk to the gaseous oxygen isotope values. Therefore, building blocks of planet show oxygen isotope variations with variable 16O component, but with similar 17O/18O ratio each other. Oxygen isotopic compositions of outer planets would be 16O-poor in order of increasing distance from the Sun if outer planet formation started from icy planetesimal accretion.
The Astromaterials Science Research group of JAXA has been organized in 2015 as successor to the extraterrestrial curation facility. New mission of the group is research oriented in addition to routine operational services to scientific communities. As a result, it is necessary to enhance strong interactive relationship with material scientists of industry-government-academia research communities in the world. In this presentation, I introduce present status of the group with the history and we would like to discuss strategy for the enhancement towards new generation sample return missions of Hayabusa2, OSIRIS-Rex, and MMX.
Are spectrometers in your laboratory useful to analyze your geochemical problems? Are state-of-the-art spectrometers in the world useful to analyze your geochemical problems? Do you need to invent novel spectrometers to analyze your geochemical problems? I would like to discuss with peoples who answer YES for the last question. Why do we want to invent novel analyzers beyond state-of-the-art spectrometer? Because new geochemical problems, which are difficult to solve by use of state-of-the-art spectrometers, are discovered by yours. Development of novel spectrometers begins collaboration between new types of physics and chemistry, and advance towards discovery of new spectrometer. I would like to discuss the case of isotope microscope, as an example that discovery on geochemistry has been made by an invention of new spectrometer.
Laboratory analysis of space materials is an important method to study origin of solar system. Among the laboratory analysis, microscopy is very useful because space materials have complex and fine structures. Large differences of isotopic composition are common among the space materials. Isotopes can be used as tracers to study origin and evolution of space materials. Conventional mass spectrometry is limited to apply for microanalysis, but recently, isotope microscopy is developed and the situation is gradually changed. The isotope microscopy can obtain precise isotopic image of fine structures of space materials and analyze formation processes of the structure in detail. Here we report studies of oldest materials of the solar system, presolar grains formed in circum stellar, and ice fossils formed in molecular cloud.
We have been developing secondary neutral mass spectrometry using a femtosecond laser for the characterization of asteroidal samples returned by the Hayabusa spacecraft. The secondary neutral mass spectrometry demonstrates analytical potentials of a spatial resolution of 40 nm and the postionization of He atoms. We plan to apply the measurement technique to natural space materials in order to characterize the solar activities of a young sun and determine the age of materials formed beyond the solar system formation.