Researcher Database

Jun Masamune
Faculty of Science Mathematics Mathematics
Professor

Researcher Profile and Settings

Affiliation

  • Faculty of Science Mathematics Mathematics

Job Title

  • Professor

Degree

  • 博士(情報)(東北大学)

Research funding number

  • 50706538

J-Global ID

Academic & Professional Experience

  • Tohoku University Graduate School of Information Sciences, Department of System Information Sciences, Mathematical System Analysis,Mathematical System Analysis I Associate Professor

Research Activities

Published Papers

  • A generalized conservation property for the heat semigroup on weighted manifolds
    Masamune, J, Schmidt, M
    Mathematische Annalen 1 - 38 2019 [Refereed][Not invited]
  • Global properties of Dirichlet forms in terms of Green's formula
    Haeseler, S, Lenz, D, Keller, M, Masamune, J, Schmidt, S
    Calculus of Variations and PDEs 56 2017 [Refereed][Not invited]
  • Probabilistic characterizations of essential self-adjointness and removability of singularities
    Hinz, M, Kang, S, Masamune, J
    Science Journal of Volgograd State University. Mathematics 2017 [Refereed][Not invited]
  • Endothelial monolayer permeability under controlled oxygen tension
    Funamoto, K, Yoshino, D, Matsubara, K, Zervantonakis, I, Funamoto, K, Nakayama, M, Masamune, J, Kimura, J, K. Roger
    Integrative Biology 6 529 - 538 2017 [Refereed][Not invited]
  • Alexander Grigor'yan, Jun Masamune
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES 100 (5) 607 - 632 0021-7824 2013/11 [Refereed][Not invited]
     
    We present and prove new characterizations of parabolicity and stochastic completeness for a general weighted manifold M as well as the uniqueness of the Markov extensions of the Laplacian in terms of Green's formula. Moreover, we study the relationship between those properties and the singularity of M in terms of a fractal dimension and capacity. (C) 2013 Elsevier Masson SAS. All rights reserved.
  • Xueping Huang, Matthias Keller, Jun Masamune, Radoslaw K. Wojciechowski
    JOURNAL OF FUNCTIONAL ANALYSIS 265 (8) 1556 - 1578 0022-1236 2013/10 [Refereed][Not invited]
     
    We study the uniqueness of self-adjoint and Markovian extensions of the Laplacian on weighted graphs. We first-show that, for locally finite graphs and a certain family of metrics, completeness of the graph implies uniqueness of these extensions. Moreover, in the case when the graph is not metrically complete and the Cauchy boundary has finite capacity, we characterize the uniqueness of the Markovian extensions. (C) 2013 Elsevier Inc. All rights reserved.

Conference Activities & Talks

  • A conservation property of Brownian motion with killing of a Riemannian manifold  [Invited]
    Jun Masamune
    Analysis and PDEs on Manifolds  2017/09
  • Generalized conservation property  [Invited]
    Jun Masamune
    Japanese-German Open Conference on Stochastic Analysis 2017  2017/09
  • H-convergence on Riemannian manifolds  [Invited]
    Jun Masamune
    Analysis and Geometry on Graphs and Manifolds  2017/07

Educational Activities

Teaching Experience

  • Inter-Graduate School Classes(General Subject):Natural and Applied Sciences
    開講年度 : 2018
    課程区分 : 修士課程
    開講学部 : 大学院共通科目
    キーワード : <正宗> 均質化法,材料工学,偏微分方程式 <坂井> 有向パーコレーション,相転移,臨界現象
  • Special Lecture II
    開講年度 : 2018
    課程区分 : 修士課程
    開講学部 : 理学院
  • Overview of Mathematical Sciences
    開講年度 : 2018
    課程区分 : 修士課程
    開講学部 : 理学院
    キーワード : <正宗> 均質化法,材料工学,偏微分方程式 <坂井> 有向パーコレーション,相転移,臨界現象
  • Special Lecture II
    開講年度 : 2018
    課程区分 : 博士後期課程
    開講学部 : 理学院
  • Exercises on Basic Mathematics C
    開講年度 : 2018
    課程区分 : 学士課程
    開講学部 : 理学部
    キーワード : 実数、数列、収束、連続、微分、積分
  • Basic Mathematics C
    開講年度 : 2018
    課程区分 : 学士課程
    開講学部 : 理学部
    キーワード : 実数,数列,収束,連続,微分,積分
  • Calculus II
    開講年度 : 2018
    課程区分 : 学士課程
    開講学部 : 全学教育
    キーワード : 原始関数, 積分, 重積分, リ-マン和, 変数変換


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.