A Ishida, T Yoshikawa, T Kamidate
ANALYTICAL BIOCHEMISTRY 316 (1) 127 - 130 0003-2697 2003/05
[Not refereed][Not invited] The firefly bioluminescence (BL)(1) technique for measuring biomass, cell status, and activity of adenosine 5'-triphosphate (ATP)-related enzymes and reporter protein has been widely used because of its rapidity, high sensitivity, and robustness [1-9]. This technique is based on the reaction including the oxidative decarboxylation of luciferin by firefly luciferase in the presence of ATP and Mg2+, resulting in the production of light. Recently this BL assay has received considerable attention in the food industry because this method can be used as a rapid monitoring system for the safety of food products and hygiene of food contact surfaces at critical control points of food processing [10-14]. ATP is present in all living cells and the amount of ATP per cell is fairly constant. The presence of ATP in the food products and manufacturing environment suggests contamination of microbes and food residues.
The firefly BL method is subject to lowering of sensitivity because of the inhibition of luciferase by ATP extractants and various salts. The ATP extractants are essential compounds for release of ATP from living cells, such as dilute acids, surfactants, boiling buffers, and organic solvents [15,16]. Among these extractants, trichloroacetic acid (TCA), which is suitable for a variety of types of cells, is the most widely used. This extractant, however, is a rather potent inhibitor of luciferase [2,17,18]. In addition to the ATP extractant, several anions such as perchlorate, nitrate, and halide ions inhibit the enzyme. Chloride ion is contained as a. form of sodium chloride in a variety of foods. Although bacteria can barely survive at a high concentration of NaCl, the presence of bacteria is often detected in foods containing NaCl. Therefore, there should be a considerable loss in sensitivity of the BL assay for monitoring bacterial contamination of those food products because of the inhibition by NaCl and TCA.
Previously, we have found that diethylaminoethyldextran (DEAE-Dx) enhanced the light emission from the BL reaction [19] and have successively applied it to a highly sensitive BL assay of ATP in the presence of TCA or Triton X-100 [20]. On the other hand, the effect of a variety of ions on the BL reaction was studied and the possible mechanisms of the inhibition by several inorganic anions were presented [21-23]. Furthermore the inhibitory effects of inorganic ions in real samples on the BL assay were investigated [24-26]. However, there was no study on improving the sensitivity of the BL assay in the presence of those inhibitors.
In this report, we describe the highly sensitive BL assay under severe conditions, in which, in addition to TCA, chloride ion inhibits luciferase, based on the enhancement effect of DEAE-Dx on the BL emission.