研究者データベース

研究者情報

マスター

アカウント(マスター)

  • 氏名

    福原 秀雄(フクハラ ヒデオ), フクハラ ヒデオ

所属(マスター)

  • 薬学研究院 創薬科学研究教育センター

所属(マスター)

  • 薬学研究院 創薬科学研究教育センター

独自項目

syllabus

  • 2020, 生化学実習Ⅰ, Laboratory Exercise of Biochemistry I, 学士課程, 薬学部, タンパク質、アフィニティー精製、SDS-PAGE、クマシー染色、ELISA、抗体、抗原、タンパク質分子量、構造解析
  • 2020, 生化学実習Ⅱ, Laboratory Exercise of Biochemistry II, 学士課程, 薬学部, 酵素反応速度論、ミカエリス定数、最大速度、代謝回転数、阻害剤、阻害定数
  • 2020, 生物物理化学, Biophysics, 学士課程, 薬学部, 反応速度論,生体分子機器分析,測定原理
  • 2020, 一般教育演習(フレッシュマンセミナー), Freshman Seminar, 学士課程, 全学教育, 医学、免疫学、農学、分子生物学、生化学、薬学、構造生物学
  • 2020, 分析化学実習, Laboratory Exercise of Analytical Chemistry, 学士課程, 薬学部, 定量分析,状態分析,日本薬局方
  • 2020, 薬剤学実習, Laboratory Exercise of Pharmaceutics, 学士課程, 薬学部, 消化管吸収、pH分配仮説、コンパートメントモデル、尿中排泄、粒子径測定
  • 2020, 物理化学Ⅰ, Physical Chemistry I, 学士課程, 薬学部, 化学結合、量子化学、分光学、電子スペクトル、振動スペクトル、回転スペクトル、核磁気共鳴(NMR)、X線結晶構造解析等、機器分析

researchmap

プロフィール情報

学位

  • 博士(農学)(九州大学)

プロフィール情報

  • 福原, フクハラ
  • 秀雄, ヒデオ
  • ID各種

    201301098028981962

業績リスト

研究分野

  • ライフサイエンス / 構造生物化学

論文

  • Rika Yamazaki, Atsushi Furukawa, Kouyuki Hirayasu, Kohei Yumoto, Hideo Fukuhara, Hisashi Arase, Katsumi Maenaka
    Journal of Biological Chemistry 2020年05月18日 [査読有り][通常論文]
  • Takashi Tadokoro, Mst Lubna Jahan, Yuri Ito, Maino Tahara, Surui Chen, Atsutoshi Imai, Natsumi Sugimura, Koki Yoshida, Mizuki Saito, Toyoyuki Ose, Takao Hashiguchi, Makoto Takeda, Hideo Fukuhara, Katsumi Maenaka
    The FEBS journal 287 1 145 - 159 2020年01月 [査読有り][通常論文]
     
    The measles virus (MV) is a major cause of childhood morbidity and mortality worldwide. We previously established a mouse monoclonal antibody, 2F4, which shows high neutralizing titers against eight different genotypes of MV. However, the molecular basis for the neutralizing activity of the 2F4 antibody remains incompletely understood. Here, we have evaluated the binding characteristics of a Fab fragment of the 2F4 antibody. Using the MV infectious assay, we demonstrated that 2F4 Fab inhibits viral entry via either of two cellular receptors, SLAM and Nectin4. Surface plasmon resonance (SPR) analysis of recombinant proteins indicated that 2F4 Fab interacts with MV hemagglutinin (MV-H) with a KD value at the nm level. Furthermore, we designed a single-chain Fv fragment of 2F4 antibody as another potential biopharmaceutical to target measles. The stable 2F4 scFv was successfully prepared by the refolding method and shown to interact with MV-H at the μm level. Like 2F4 Fab, scFv inhibited receptor binding and viral entry. This indicates that 2F4 mAb uses the receptor-binding site and/or a neighboring region as an epitope with high affinity. These results provide insight into the neutralizing activity and potential therapeutic use of antibody fragments for MV infection.
  • Kimiko Kuroki, Haruki Matsubara, Ryo Kanda, Naoyuki Miyashita, Mitsunori Shiroishi, Yuko Fukunaga, Jun Kamishikiryo, Atsushi Fukunaga, Hideo Fukuhara, Kaoru Hirose, Joan S Hunt, Yuji Sugita, Shunsuke Kita, Toyoyuki Ose, Katsumi Maenaka
    Journal of immunology (Baltimore, Md. : 1950) 203 12 3386 - 3394 2019年12月15日 [査読有り][通常論文]
     
    Human leukocyte Ig-like receptors (LILR) LILRB1 and LILRB2 are immune checkpoint receptors that regulate a wide range of physiological responses by binding to diverse ligands, including HLA-G. HLA-G is exclusively expressed in the placenta, some immunoregulatory cells, and tumors and has several unique isoforms. However, the recognition of HLA-G isoforms by LILRs is poorly understood. In this study, we characterized LILR binding to the β2-microglobulin (β2m)-free HLA-G1 isoform, which is synthesized by placental trophoblast cells and tends to dimerize and multimerize. The multimerized β2m-free HLA-G1 dimer lacked detectable affinity for LILRB1, but bound strongly to LILRB2. We also determined the crystal structure of the LILRB1 and HLA-G1 complex, which adopted the typical structure of a classical HLA class I complex. LILRB1 exhibits flexible binding modes with the α3 domain, but maintains tight contacts with β2m, thus accounting for β2m-dependent binding. Notably, both LILRB1 and B2 are oriented at suitable angles to permit efficient signaling upon complex formation with HLA-G1 dimers. These structural and functional features of ligand recognition by LILRs provide novel insights into their important roles in the biological regulations.
  • Hideo Fukuhara, Yuri Ito, Miyuki Sako, Mizuho Kajikawa, Koki Yoshida, Fumio Seki, Mwila Hilton Mwaba, Takao Hashiguchi, Masa-Aki Higashibata, Toyoyuki Ose, Kimiko Kuroki, Makoto Takeda, Katsumi Maenaka
    Viruses 11 8 2019年08月19日 [査読有り][通常論文]
     
    Measles virus (MV) and canine distemper virus (CDV) are highly contagious and deadly, forming part of the morbillivirus genus. The receptor recognition by morbillivirus hemagglutinin (H) is important for determining tissue tropism and host range. Recent reports largely urge caution as regards to the potential expansion of host specificities of morbilliviruses. Nonetheless, the receptor-binding potential in different species of morbillivirus H proteins is largely unknown. Herein, we show that the CDV-H protein binds to the dog signaling lymphocyte activation molecule (SLAM), but not to the human, tamarin, or mouse SLAM. In contrast, MV-H can bind to human, tamarin and dog SLAM, but not to that of mice. Notably, MV binding to dog SLAM showed a lower affinity and faster kinetics than that of human SLAM, and MV exhibits a similar entry activity in dog SLAM- and human SLAM-expressing Vero cells. The mutagenesis study using a fusion assay, based on the MV-H-SLAM complex structure, revealed differences in tolerance for the receptor specificity between MV-H and CDV-H. These results provide insights into H-SLAM specificity related to potential host expansion.
  • Yoichiro Fujioka, Shinya Nishide, Toyoyuki Ose, Tadaki Suzuki, Izumi Kato, Hideo Fukuhara, Mari Fujioka, Kosui Horiuchi, Aya O. Satoh, Prabha Nepal, Sayaka Kashiwagi, Jing Wang, Mika Horiguchi, Yuko Sato, Sarad Paudel, Asuka Nanbo, Tadaaki Miyazaki, Hideki Hasegawa, Katsumi Maenaka, Yusuke Ohba
    Cell Host and Microbe 23 6 809 - 818.e5 2018年06月13日 [査読有り][通常論文]
     
    Influenza A virus (IAV) infection is initiated by the attachment of the viral glycoprotein hemagglutinin (HA) to sialic acid on the host cell surface. However, the sialic acid-containing receptor crucial for IAV infection has remained unidentified. Here, we show that HA binds to the voltage-dependent Ca2+ channel Cav1.2 to trigger intracellular Ca2+ oscillations and subsequent IAV entry and replication. IAV entry was inhibited by Ca2+ channel blockers (CCBs) or by knockdown of Cav1.2. The CCB diltiazem also inhibited virus replication in vivo. Reintroduction of wild-type but not the glycosylation-deficient mutants of Cav1.2 restored Ca2+ oscillations and virus infection in Cav1.2-depleted cells, demonstrating the significance of Cav1.2 sialylation. Taken together, we identify Cav1.2 as a sialylated host cell surface receptor that binds HA and is critical for IAV entry. Influenza A virus (IAV) infection is mediated by attachment of the viral hemagglutinin to sialic acid on the host cell surface. Fujioka et al. show that hemagglutinin binds to a voltage-dependent calcium channel in a sialylation-dependent manner and that inhibition of the channel resulted in suppression of IAV entry and infection.
  • Sasaki M, Anindita PD, Ito N, Sugiyama M, Carr M, Fukuhara H, Ose T, Maenaka K, Takada A, Hall WW, Orba Y, Sawa H
    The Journal of infectious diseases 217 11 1740 - 1749 2018年05月 [査読有り][通常論文]
  • Atsutoshi Imai, Takashi Tadokoro, Shunsuke Kita, Masataka Horiuchi, Hideo Fukuhara, Katsumi Maenaka
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 478 2 580 - 585 2016年09月 [査読有り][通常論文]
     
    The BacMam system uses modified insect viruses (baculoviruses) as vehicles to efficiently deliver genes for expression in mammalian cells. The technique can be widely applied to large-scale recombinant protein production with appropriate modifications, high-throughput screening platforms for cell-based assays, and the delivery of large genes. The silkworm system is often employed as a rapid and cost-effective approach for recombinant baculovirus generation. Here we have developed the novel BacMam system using silkworm baculovirus, and shown the successful expression of EGFP in mammalian cells. The transduction to mammalian cells via the BacMam system was improved by adding phosphate buffered saline and sodium butyrate to the culture medium and lowering the temperature after viral infection. This study provides an alternative gene delivery system for mammalian cells, which has various potential applications, including efficient native protein production and gene therapy. (C) 2016 Elsevier Inc. All rights reserved.
  • Atsushi Furukawa, Shunsuke Kita, Takashi Tadokoro, Hideo Fukuhara, Katsumi Maenaka
    C-Type Lectin Receptors in Immunity 179 - 190 2016年01月01日 [査読有り][通常論文]
     
    Numerous structural analyses (X-ray crystallography and NMR) of C-type lectin receptors (CLRs) have been performed, because CLRs are not only attractive as important molecules in immunity and infectious diseases but also as drug targets. In CLRs, high amino acid sequence similarity exists in the extracellular carbohydrate recognition domains (CRDs), which are responsible for ligand binding. However, recent functional analyses of CLRs implied that these molecules recognize a wide variety of ligands in addition to saccharides, including glycopeptides, glycolipids, and proteins. In this chapter, we focus on structural studies of CLRs. We first summarize the structural features conserved among the CRDs and then describe how each C-type lectin receptor elegantly achieves its distinct ligand specificity, by illustrating the structural aspects of several representative CLRs.
  • Shunsuke Kita, Haruki Matsubara, Yoshiyuki Kasai, Takaharu Tamaoki, Yuki Okabe, Hideo Fukuhara, Jun Kamishikiryo, Elena Krayukhina, Susumu Uchiyama, Toyoyuki Ose, Kimiko Kuroki, Katsumi Maenaka
    EUROPEAN JOURNAL OF IMMUNOLOGY 45 6 1605 - 1613 2015年06月 [査読有り][通常論文]
     
    Emerging evidence has revealed the pivotal roles of C-type lectin-like receptors (CTLRs) in the regulation of a wide range of immune responses. Human natural killer cell receptor-P1A (NKRP1A) is one of the CTLRs and recognizes another CTLR, lectin-like transcript 1 (LLT1) on target cells to control NK, NKT and Th17 cells. The structural basis for the NKRP1A-LLT1 interaction was limitedly understood. Here, we report the crystal structure of the ectodomain of LLT1. The plausible receptor-binding face of the C-type lectin-like domain is flat, and forms an extended -sheet. The residues of this face are relatively conserved with another CTLR, keratinocyte-associated C-type lectin, which binds to the CTLR member, NKp65. A LLT1-NKRP1A complex model, prepared using the crystal structures of LLT1 and the keratinocyte-associated C-type lectin-NKp65 complex, reasonably satisfies the charge consistency and the conformational complementarity to explain a previous mutagenesis study. Furthermore, crystal packing and analytical ultracentrifugation revealed dimer formation, which supports a complex model. Our results provide structural insights for understanding the binding modes and signal transduction mechanisms, which are likely to be conserved in the CTLR family, and for further rational drug design towards regulating the LLT1 function.
  • Hideo Fukuhara, Atsushi Furukawa, Katsumi Maenaka
    STRUCTURE 22 12 1694 - 1696 2014年12月 [査読有り][通常論文]
     
    C-type lectin-like receptor 2 (CLEC-2) is a member of the C-type lectin (like) receptor (CLR) family that uses a Ca2+ binding domain to bind specific glycans. However, in this issue of Structure, Nagae and colleagues report on how the structures of CLEC-2 in complex with a glycopeptide podoplanin and a snake venom protein, rhodocytin, show a different mode of binding.
  • Masako Abe, Maino Tahara, Kouji Sakai, Hiromi Yamaguchi, Kazuhiko Kanou, Kazuya Shirato, Miyuki Kawase, Masahiro Noda, Hirokazu Kimura, Shutoku Matsuyama, Hideo Fukuhara, Katsumi Mizuta, Katsumi Maenaka, Yasushi Ami, Mariko Esumi, Atsushi Kato, Makoto Takeda
    JOURNAL OF VIROLOGY 87 21 11930 - 11935 2013年11月 [査読有り][通常論文]
     
    Here, we show that human parainfluenza viruses and Sendai virus (SeV), like other respiratory viruses, use TMPRSS2 for their activation. The membrane fusion proteins of respiratory viruses often possess serine and glutamine residues at the P2 and P3 positions, respectively, but these residues were not critical for cleavage by TMPRSS2. However, mutations of these residues affected SeV growth in specific epithelial cell lines, suggesting the importance of these residues for SeV replication in epithelia.
  • Hideo Fukuhara, Surui Chen, Shin Takeda, Katsumi Maenaka
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN 133 5 549 - 559 2013年05月 [査読有り][通常論文]
     
    The genus Morbillivirus includes measles virus, canine distemper virus and rinderpest virus. These are highly contagious and exhibit high mortality. These viruses have the attachment glycoprotein, hemagglutinin (H), at the virus surface, which bind to signaling lymphocyte activation molecule (SLAM) and Nectin 4 as receptors for the entry. However, the molecular mechanism for this entry has been limitedly understood. Here we summarize the current topics, (1) newly identified receptor, Nectin 4, (2) crystal structures of H-receptor complexes and (3) detail biochemical studies of the H-F communication for the entry. These provide insight on the mechanism of morbillivirus entry event and furthermore drug developments.

MISC

担当経験のある科目(授業)

  • 物理化学Ⅰ北海道大学 薬学部
  • 先端生物科学実験法北海道大学 薬学部
  • 先端創薬学特論北海道大学 大学院薬学研究院
  • バイオ医薬学基礎特論北海道大学 大学院薬学研究院
  • 薬剤実習北海道大学 薬学部
  • 分析化学実習北海道大学 薬学部


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.