日本学術振興会:科学研究費助成事業
研究期間 : 2006年 -2009年
代表者 : 宮地 晶彦, 勘甚 裕一, 小薗 英雄, 佐藤 秀一, 佐藤 圓治, 古谷 康雄, 立澤 一哉, 篠原 昌彦, 大阿久 俊則, 岡田 正已, 杉本 充, 冨田 直人, 小林 政晴, 澤野 嘉宏, 中井 英一, 勘甚 裕一, 佐藤 圓治
フェファーマン-スタインによるハーディー空間と同様の性質を持つ関数空間をユークリッド空間の領域上に導入し,その性質を確立した.この関数空間は,或る条件をみたす微分同相写像の定める変数変換によって,同種の関数空間に変換されるという性質を持つ.この関数空間を古典的直交級数の研究に応用した.時間周波数解析など実関数論的調和解析に現れるいくつかの関数空間の性質を調べ,それらの空間での作用素についての結果を得た.