Akatsuki Saito, Tomokazu Tamura, Jiri Zahradnik, Sayaka Deguchi, Koshiro Tabata, Yuki Anraku, Izumi Kimura, Jumpei Ito, Daichi Yamasoba, Hesham Nasser, Mako Toyoda, Kayoko Nagata, Keiya Uriu, Yusuke Kosugi, Shigeru Fujita, Maya Shofa, Mst Monira Begum, Ryo Shimizu, Yoshitaka Oda, Rigel Suzuki, Hayato Ito, Naganori Nao, Lei Wang, Masumi Tsuda, Kumiko Yoshimatsu, Jin Kuramochi, Shunsuke Kita, Kaori Sasaki-Tabata, Hideo Fukuhara, Katsumi Maenaka, Yuki Yamamoto, Tetsuharu Nagamoto, Hiroyuki Asakura, Mami Nagashima, Kenji Sadamasu, Kazuhisa Yoshimura, Takamasa Ueno, Gideon Schreiber, Akifumi Takaori-Kondo, Kotaro Shirakawa, Hirofumi Sawa, Takashi Irie, Takao Hashiguchi, Kazuo Takayama, Keita Matsuno, Shinya Tanaka, Terumasa Ikeda, Takasuke Fukuhara, Kei Sato
CELL HOST & MICROBE 30 9 1540 - + 2022年09月
The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency, but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.