研究者データベース

研究者情報

マスター

アカウント(マスター)

  • 氏名

    粕谷 直彦(カスヤ ナオヒコ), カスヤ ナオヒコ

所属(マスター)

  • 理学研究院 数学部門 数学分野

所属(マスター)

  • 理学研究院 数学部門 数学分野

独自項目

syllabus

  • 2021, 幾何学講義, Geometry, 修士課程, 理学院, トポロジー、ファイバー束、複素多項式の孤立臨界点、特異点リンク、ミルナー束、ミルナーファイバー、ブリスコーン多様体
  • 2021, 幾何学続論, Advanced Geometry, 学士課程, 理学部, トポロジー、ファイバー束、複素多項式の孤立臨界点、特異点リンク、ミルナー束、ミルナーファイバー、ブリスコーン多様体
  • 2021, 線形代数学Ⅱ, Linear Algebra II, 学士課程, 全学教育, ベクトル空間, 線形写像, 線形独立, 基底, 固有値, 固有ベクトル, 対角化

researchmap

プロフィール情報

所属

  • 北海道大学, 大学院理学研究院 数学部門, 准教授

学位

  • 博士(数理科学)(2014年03月 東京大学)

プロフィール情報

  • 粕谷
  • 直彦
  • ID各種

    201601003743631849

所属

  • 北海道大学, 大学院理学研究院 数学部門, 准教授

業績リスト

研究キーワード

  • 埋め込み   複素構造   接触構造   微分位相幾何学   

研究分野

  • 自然科学一般 / 幾何学 / 微分位相幾何学

経歴

  • 2017年04月 - 2021年03月 京都産業大学 理学部 数理科学科 准教授
  • 2015年04月 - 2017年03月 青山学院大学 社会情報学部 助教
  • 2014年04月 - 2015年03月 東京大学 大学院数理科学研究科 特任研究員
  • 2012年04月 - 2014年03月 日本学術振興会 特別研究員 DC2

学歴

  • 2011年04月 - 2014年03月   東京大学   大学院数理科学研究科 博士課程
  • 2009年04月 - 2011年03月   東京大学   大学院数理科学研究科 修士課程
  • 2007年04月 - 2009年03月   東京大学   理学部   数学科
  • 2005年04月 - 2007年03月   東京大学   教養学部   理科I類

論文

  • Classification of orientable torus bundles over closed orientable surfaces
    Naohiko Kasuya, Issei Noda
    arXiv: 2406.14138 2024年06月
  • Naohiko Kasuya, Daniele Zuddas
    Proceedings of the American Mathematical Society 152 2 709 - 723 2024年02月 [査読有り][通常論文]
  • Naohiko Kasuya, Daniele Zuddas
    Algebraic & Geometric Topology 23 5 2141 - 2156 2023年07月25日 [査読有り][通常論文]
  • Lefschetz fibrations on the Milnor fibers of cusp and simple elliptic singularities
    Naohiko Kasuya, Hiroki Kodama, Yoshihiko Mitsumatsu, Atsuhide Mori
    arXiv: 2111.00749 2021年11月
  • Naohiko Kasuya, Atsuhide Mori
    Journal of Singularities 23 1 - 14 2021年02月04日 [査読有り][通常論文]
  • 粕谷 直彦
    Proceedings of the American Mathematical Society 148 7 3021 - 3024 2020年03月17日 [査読有り][通常論文]
  • Naohiko Kasuya, Masamichi Takase
    International Journal of Mathematics 30 12 1992003  2019年11月 [査読有り][通常論文]
     
    This note corrects an error in Theorem 5.2(c) of our paper "Generic immersions and totally real embeddings".
  • Antonio Di Scala, Naohiko Kasuya, Daniele Zuddas
    Journal of Symplectic Geometry 16 3 631 - 644 2018年11月26日 [査読有り][通常論文]
  • Naohiko Kasuya, Masamichi Takase
    International Journal of Mathematics 29 11 1850073  2018年11月 [査読有り][通常論文]
     
    We show that, for a closed orientable n-manifold, with n not congruent to 3 modulo 4, the existence of a CR-regular embedding into complex (n - 1)-space ensures the existence of a totally real embedding into complex n-space. This implies that a closed orientable (4k + 1)-manifold with non-vanishing Kervaire semi-characteristic possesses no CR-regular embedding into complex 4k-space. We also pay special attention to the cases of CR-regular embeddings of spheres and of simply-connected 5-manifolds.
  • Naohiko Kasuya, Masamichi Takase
    Transactions of the American Mathematical Society 370 3 2023 - 2038 2018年 [査読有り][通常論文]
     
    It is shown that every knot or link is the set of complex tangents of a 3-sphere smoothly embedded in the 3-dimensional complex space. We show in fact that a 1-dimensional submanifold of a closed orientable 3-manifold can be realised as the set of complex tangents of a smooth embedding of the 3-manifold into the 3-dimensional complex space if and only if it represents the trivial integral homology class in the 3-manifold. The proof involves a new application of singularity theory of differentiable maps.
  • Antonio J. Di Scala, Naohiko Kasuya, Daniele Zuddas
    Geometry & Topology 21 4 2461 - 2473 2017年05月19日 [査読有り][通常論文]
     
    We construct the first examples of non-Kahler complex structures on R-4. These complex surfaces have some analogies with the complex structures constructed in the early fifties by Calabi and Eckmann on the products of two odd-dimensional spheres. However, our construction is quite different from that of Calabi and Eckmann.
  • Naohiko Kasuya
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN 68 2 737 - 743 2016年04月 [査読有り][通常論文]
     
    We prove that the first Chern class of a codimension two closed contact submanifold of the odd dimensional Euclidean space is trivial. For any closed co-oriented contact 3-manifold with trivial Chern class, we prove that there is a contact structure on the 5-dimensional Euclidean space which admits a contact embedding of it.
  • Antonio J. Di Scala, Naohiko Kasuya, Daniele Zuddas
    JOURNAL OF GEOMETRY AND PHYSICS 101 19 - 26 2016年03月 [査読有り][通常論文]
     
    We prove that any compact almost complex manifold (M-2m, J) of real dimension 2m admits a pseudo-holomorphic embedding in (R4m+2, (J) over tilde) for a suitable positive almost complex structure (J) over tilde. Moreover, we give a necessary and sufficient condition, expressed in terms of the Segre class s(m) (M, J), for the existence of an embedding or an immersion in (R-4m, (J) over tilde). We also discuss the pseudo-holomorphic embeddings of an almost complex 4-manifold in (R-6, (J) over tilde). (C) 2015 Elsevier B.V. All rights reserved.
  • Naohiko Kasuya
    Demonstratio Mathematica 48 2 2015年06月01日 [査読有り][通常論文]
     
    AbstractThis is a survey article about the study of the links of some complex hypersurface singularities in ℂ
  • Naohiko Kasuya
    INTERNATIONAL JOURNAL OF MATHEMATICS 26 7 1550045  2015年06月 [査読有り][通常論文]
     
    We prove that a closed co-oriented contact (2m + 1)-manifold (M2m+1, xi) can be a contact submanifold of the standard contact structure on R4m+1, if it satisfies one of the following conditions: (1) m is odd (m >= 3) and H-1 (M2m+1; Z) = 0, (2) m is even (m = 4) and M2m+1 is 2-connected, (3) m = 2 and M-5 is simply-connected.
  • Naohiko Kasuya
    TOKYO JOURNAL OF MATHEMATICS 37 1 1 - 20 2014年06月 [査読有り][通常論文]
     
    Caubel, Nemethi, and Popescu-Pampu in [2] proved that an oriented 3-manifold admits at most one positive contact structure which can be realized as the complex tangency along the link of a complex surface singularity. They call it the Milnor fillable contact structure. Lekili and Ozbagci in [10] showed that a Milnor finable contact structure is universally tight. In particular, by Honda's classification [5], the link of a cusp singularity is contactomorphic to the positive contact structure associated to the Anosov flow on a Sol-manifold (see [1]). We describe the contact structure on the link of a cusp singularity in two different ways without using Honda's classification theorem. One description is based on the toric method introduced in Mori [15]. The other description is based on Hirzebruch's construction of the Hilbert modular cusps. Consequently, we give certain answers to the problems in Mori [14] concerning the relation between the cusp singularities and the simple elliptic singularities, and the higher dimensional extension of the local Lutz-Mori twist.
  • Naohiko Kasuya, Toru Yoshiyasu
    INTERNATIONAL JOURNAL OF MATHEMATICS 24 9 1350073  2013年08月 [査読有り][通常論文]
     
    We prove that for any closed parallelizable n-manifold M-n, if the dimension n not equal 7, or if n = 7 and the Kervaire semi-characteristic chi(1/2) (M-7) is zero, then M-n can be embedded in the Euclidean space R-2n with a certain symplectic structure as a Lagrangian submanifold. By the results of Gromov and Fukaya, our result gives rise to symplectic structures of R-2n(n >= 3) which are not conformally equivalent to open domains in standard ones.

共同研究・競争的資金等の研究課題

  • 日本学術振興会:科学研究費助成事業
    研究期間 : 2021年04月 -2026年03月 
    代表者 : 三松 佳彦, 直江 央寛, 高倉 樹, 太田 啓史, 三好 重明, 粕谷 直彦
  • 日本学術振興会:科学研究費助成事業
    研究期間 : 2021年04月 -2025年03月 
    代表者 : 粕谷 直彦
     
    研究課題(17K14193)において、強擬凹曲面への正則ハンドルの接着法を確立することにより「任意の3次元閉多様体はケーラーな強擬凹曲面の境界として実現可能である」という結果を得た。本研究課題ではその続きとして「強擬凹曲面上のケーラー形式と境界との相性がよい場合、境界上の接触構造はtightか?」という問題に取り組んでいる。現在のところ、以下の2つのアプローチを試みている。一つ目は、強擬凹曲面について何らかの意味で小平の埋め込み定理の類似が成り立てば、そこから境界のfillabilityが示され、特に接触構造がtightであることが示されるだろうというものである。しかし、強擬凹曲面上ではコンパクト複素曲面におけるホッジ理論に相当するものがないため、この方針はまだ糸口が見えない。何とか状況を打開するために、小平の複素曲面論や多変数関数論におけるL^2理論をよく理解しようと論文を勉強している段階である。二つ目の方針は、ハンドル接着によって具体的に反例を構成するというものである。つまり、境界との相性がよいケーラー形式を持ちかつ境界がovertwistedである強擬凹曲面を作るという方針である。現段階では、こちらの方が有望ではないかと考えており、contact (+1)-surgeryに相当するハンドル接着のみを使うことが鍵となるだろうと予想している。
  • 日本学術振興会:科学研究費助成事業
    研究期間 : 2017年04月 -2023年03月 
    代表者 : 粕谷 直彦
     
    本研究課題の目標の一つである「任意の3次元閉接触多様体は強擬凹複素曲面の境界として実現可能か?」という問いを肯定的に解決し、さらに接触多様体を充填する複素曲面はケーラーにも非ケーラーにもとれることを証明した。この結果は2002年にEtnyre-Hondaによって示された「任意の3次元閉接触多様体はconcave symplectic fillingを許容する」という定理のholomorphic versionと解釈することができる。また、任意の2つの3次元閉接触多様体を複素コボルディズムでつなげること、さらにそのコボルディズムはケーラーにとれることを証明した。ただし、この場合のケーラー構造は境界の接触構造との相性が悪く、得られる複素コボルディズムは必ずしもシンプレクティックコボルディズムとは限らない。 今回我々がとった手法は、研究実施計画に記した通り、Eliashbergのハンドル接着によるシュタイン多様体の構成法を参考にしたものである。Eliashbergの方法では、強擬凸境界上のルジャンドル結び目に沿って、ラグランジュ円板をcoreとする正則ハンドルを接着するが、我々の方法では、強擬凹境界上の横断的結び目に沿って、正則円板をcoreとする正則ハンドルを接着する。この違いが我々のアイディアの本質である。これらの内容は、Daniele Zuddas氏との共著論文としてまとめ、現在学術雑誌へ投稿中である。


Copyright © MEDIA FUSION Co.,Ltd. All rights reserved.