Eiko Hayase, Daigo Hashimoto, Kiminori Nakamura, Clara Noizat, Reiki Ogasawara, Shuichiro Takahashi, Hiroyuki Ohigashi, Yuki Yokoi, Rina Sugimoto, Satomi Matsuoka, Takahide Ara, Emi Yokoyama, Tomohiro Yamakawa, Ko Ebata, Takeshi Kondo, Rina Hiramine, Tomoyasu Aizawa, Yoshitoshi Ogura, Tetsuya Hayashi, Hiroshi Mori, Ken Kurokawa, Kazuma Tomizuka, Tokiyoshi Ayabe, Takanori Teshima
The Journal of experimental medicine 214 12 3507 - 3518 2017年12月04日
[査読有り] The intestinal microbial ecosystem is actively regulated by Paneth cell-derived antimicrobial peptides such as α-defensins. Various disorders, including graft-versus-host disease (GVHD), disrupt Paneth cell functions, resulting in unfavorably altered intestinal microbiota (dysbiosis), which further accelerates the underlying diseases. Current strategies to restore the gut ecosystem are bacteriotherapy such as fecal microbiota transplantation and probiotics, and no physiological approach has been developed so far. In this study, we demonstrate a novel approach to restore gut microbial ecology by Wnt agonist R-Spondin1 (R-Spo1) or recombinant α-defensin in mice. R-Spo1 stimulates intestinal stem cells to differentiate to Paneth cells and enhances luminal secretion of α-defensins. Administration of R-Spo1 or recombinant α-defensin prevents GVHD-mediated dysbiosis, thus representing a novel and physiological approach at modifying the gut ecosystem to restore intestinal homeostasis and host-microbiota cross talk toward therapeutic benefits.