The addition of chalcogenides destabilized LiBH4 efficiently and the lowest onset temperature was found to be 75 °C for LiBH4–50 wt% bulk Bi2S3. The detailed mechanism associated with this destabilization is proposed herein.
Ammonia borane (AB: NH3BH3) is a promising solid state hydrogen storage material because it contains >19 mass% of hydrogen. However, the thermal decomposition of AB kinetically requires high temperature, and considerable amount of harmful by-product gases emit from AB. Recently, the decomposition properties of AB have been improved by the composite with alanates (MAlH4, M = Na, Li). It was reported that the new compound NaAl(NH2BH3)4 formed during mechanical milling of 4AB-NaAlH4. In this work, we have tried to synthesize NaAl(NH2BH3)4 in THF solvent (Solution method) to obtain the single phase with high-purity. The powder X-ray diffraction pattern of the product obtained by the solution method was similar to that obtained by the solid method, suggesting that NaAl(NH2BH3)4 can be synthesized by the solution method as well. However, the 23Na-nuclear magnetic resonance (NMR) spectrum suggests that a different phases from NaAl(NH2BH3)4 coexist. Thus, in order to obtain the single phase of NaAl(NH2BH3)4, further optimization of reaction conditions would be necessary.