Ishikawa Fumitaro

Research Center for Integrated Quantum ElectronicsProfessor
Last Updated :2025/07/05

■Researcher basic information

Researchmap personal page

Researcher number

  • 60456994

Research Keyword

  • 分子線エピタキシー
  • 化合物半導体
  • ナノワイヤ
  • 結晶成長
  • ダイヤモンド

Research Field

  • Nanotechnology/Materials, Nanomaterials
  • Manufacturing technology (mechanical, electrical/electronic, chemical engineering), Electric/electronic material engineering
  • Nanotechnology/Materials, Crystal engineering
  • Nanotechnology/Materials, Applied materials

Educational Organization

■Career

Career

  • Apr. 2022 - Present
    Hokkaido University, Research Center for Integrated Quantum Electronics, Professor
  • May 2018 - Mar. 2022
    Ehime University, Geodynamics Research Center, 准教授 (兼任)
  • Apr. 2013 - Mar. 2022
    Ehime University, 大学院・理工学研究科, Associate Professor
  • Jun. 2007 - Mar. 2013
    Osaka University, Assistant Professor
  • Apr. 2004 - May 2007
    Paul Drude Institute for Solid State Electronics, Visiting Scientist

Educational Background

  • Apr. 2001 - Mar. 2004, 北海道大学工学研究科博士後期課程
  • Apr. 1999 - Mar. 2001, 北海道大学工学研究科博士前期課程
  • Apr. 1995 - Mar. 1999, Hokkaido University, School of Engineering

■Research activity information

Papers

Books and other publications

  • Microtexture and Polymorphism Observed During the Molecular Beam Epitaxial Growth of Group III–V Semiconductor Nanostructures
    Fumitaro Ishikawa, Kazuki Nagashima, Takeshi Yanagida, Robert D. Richards, Irina A. Buyanova, Chapter 7 in in Engineering Crystal Habit: Applications of Polymorphism and Microstexture Learning from Nature, edited by Fumitaro Ishikawa, Hiroaki Ohfuji, Jun Kawano
    Springer Singapore, Feb. 2025, 9789819602650, 109-141, [Joint work]
  • Engineering Crystal Habit: Applications of Polymorphism and Microstexture Learning from Nature
    Fumitaro Ishikawa, Hiroaki Ohfuji, Jun Kawano, Tetsuya Tohei
    Springer Singapore, Feb. 2025, 9789819602650, [Joint editor]
  • Strategic Molecular Beam Epitaxial Growth of GaAs/GaAsBi Heterostructures and Nanostructures               
    Pallavi Kisan Patil, Satoshi Shimomura, Fumitaro Ishikawa, Esperanza Luna, Masahiro Yoshimoto, Chapter 4. in Bismuth-Containing Alloys and Nanostructures, edited by Shumin Wang and Pengfei Lu
    Springer, Jul. 2019, 9789811380778, 38, pp. 59-96, English, Scholarly book, [Joint work]
  • GaAs/AlGaOx Heterostructured Nanowires               
    Fumitaro Ishikawa, Naoki Yamamoto, Chapter 8 in Novel Compound Semiconductor Nanowires - Materials, Devices, and Applications, edited by Fumitaro Ishikawa and Irina A. Buyanova, pp. 255-290
    Pan Stanford Publishing, Sep. 2017, [Joint work]
  • Dilute Bismide Nanowires               
    Wojciech M. Linhart, Szymon J. Zelewski, Fumitaro Ishikawa, Satoshi Shimomura, Robert Kudrawiec, Chapter 5 in Novel Compound Semiconductor Nanowires - Materials, Devices, and Applications, edited by Fumitaro Ishikawa and Irina A. Buyanova, pp. 161-176
    Pan Stanford Publishing, Sep. 2017, [Joint work]
  • GaNAs-Based Nanowires for Near-Infrared Optoelectronics               
    Irina A. Buyanova, Fumitaro Ishikawa, Weimin M. Chen, Chapter 4 in Novel Compound Semiconductor Nanowires - Materials, Devices, and Applications, edited by Fumitaro Ishikawa and Irina A. Buyanova, pp. 133-160
    Pan Stanford Publishing, Sep. 2017, [Joint work]
  • Novel Compound Semiconductor Nanowires - Materials, Devices, and Applications               
    Fumitaro Ishikawa, Irina A. Buyanova
    Pan Stanford Publishing, Sep. 2017, 9789814745765, 548, English, Scholarly book, [Editor]

Research Themes

  • 融合型電子材料ナノワイヤのマクロスケール機能開拓
    科学研究費助成事業
    01 Apr. 2023 - 31 Mar. 2027
    石川 史太郎, 村山 明宏, 長島 一樹
    日本学術振興会, 基盤研究(A), 北海道大学, 23H00250
  • Ultimate semiconductor photoelectric conversion
    Grants-in-Aid for Scientific Research
    28 Jun. 2024 - 31 Mar. 2026
    石川 史太郎
    Japan Society for the Promotion of Science, Grant-in-Aid for Challenging Research (Exploratory), Hokkaido University, 24K21601
  • -
    Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (A)
    05 Apr. 2021 - 31 Mar. 2026
    入舩 徹男, 河野 義生, 石川 史太郎, GREAUX Steeve, 井上 紗綾子
    グラッシーカーボンを出発物質としたナノ多結晶ダイヤモンドの合成を、比較的低圧条件下の9-15GPa領域で様々な温度で行い、純粋なナノ多結晶ダイヤモンドの合成可能温度下限の詳細を決定した。また、得られたいくつかの合成試料に対して収束イオンビームを用いた薄膜作製を行うとともに、透過型電子顕微鏡観察を行った。
    この結果9-12GPa領域では、2000℃付近の温度でグラッシーカーボンからのグラファイトの準安定的生成と成長が認められた。このグラファイトの生成によりグラッシーカーボンのダイヤモンド化が阻害され、より高温条件においてのみ、純粋なナノ多結晶ダイヤモンドが得られることが明らかになった。また、透過型電子顕微鏡による粒径観察の結果、このような比較的低圧下で得られるナノ多結晶ダイヤモンド中には、一部顕著な粒成長が認められ最大数ミクロンのダイヤモンド単結晶が混在していることがわかった。この結果は、比較的低圧の10GPa付近の圧力下でのグラッシーカーボンの直接変換により、純粋なマイクロ多結晶ダイヤモンドが得られる可能性を示唆しており、今後そのような試料の合成も試みる予定である。
    上記のグラッシーカーボンからのナノ多結晶ダイヤモンドの弾性測定には至らなかったが、超高圧合成法を用いて得られた多結晶体、特に含水鉱物の多結晶体に対して高圧下での弾性波速度が行われ、論文として発表された。またナノ多結晶ダイヤモンドを利用した高圧下におけるX線吸収実験においてもいくつかの研究成果があがっており、論文として発表されている。
    Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (A), Ehime University, 21H04622
  • Exploring novel dilute nitride and bismide quantum light source innovating optical communications
    Grants-in-Aid for Scientific Research
    07 Oct. 2021 - 31 Mar. 2025
    石川 史太郎, 富永 依里子, 樋浦 諭志
    本研究では、通信帯域光源として期待できる希釈窒素・希釈ビスマス量子ナノ構造の新展開を目指し、未開拓の成長条件、構造探求を行う。2022年度はより通信帯域で高品質な光源の探求のため、薄膜において通信光源として大きな期待が寄せられたGaInNAs混晶の高品質ナノワイヤ結晶作製に挑戦した。これまでGaInNAsナノワイヤは合成には成功したものの構造、光学特性の良好なものではなく、その高品質化が困難であった。今回、加工基板を用いた選択成長を用いることで成長可能条件のをより広範に探求した。その結果、選択成長を用いない場合と比較して成長時圧力、供給Ga照射量は3倍以上程度の広範囲で良好な結晶成長が進行することを見出した。最適化された条件下では構造、光学特性ともに高品質なGaInNAs結晶が得られ、コア-マルチシェル積層構造でGaAs/GaInNAs多重量子井戸構造を得ることができた。同試料は連携するリンショピン大学研究者らによってその良好な光学特性が確かめられた。さらに、同グループからは従来提供していたGaNAsナノワイヤで特徴的なフォトン・アップコンバージョンが得られる特異な光学特性も判明した。また、低温成長GaAsBi薄膜において、分担者と従来報告の無い固相成長現象を見出し、その成長機構の詳細を明らかにすることに取り組めた。以上より、国際連携の強化に資する成果が得られた。
    Japan Society for the Promotion of Science, Fund for the Promotion of Joint International Research (Fostering Joint International Research (B)), Ehime University, 21KK0068
  • Effective use of characteristics of Bi-based III-V compound semiconductors by controlling point defects density inside their crystals grown at low temperatures
    Grants-in-Aid for Scientific Research
    01 Apr. 2021 - 31 Mar. 2024
    富永 依里子, 上殿 明良, 石川 史太郎
    当該年度、研究代表者(富永)は分担者(石川)と協力し、250℃でGaAs基板上に成長した厚み200 nmの低温成長InGaAsBiを分子線エピタキシー(MBE)法によって複数得た。これら試料のX線回折法とラザフォード後方散乱法による結晶学的特性の解析の結果、250℃という低温であってもInGaAsBi薄膜が得られることが確認できた。一方で、前年度に取り組んだ低温成長GaAsBiのラングミュアの吸着等温式に基づくMBE成長条件におけるV/III比を基に低温成長InGaAsBiのV/III比を設定しても、Bi原子がGaAsBiの場合と比べてInGaAsBi結晶内に取り込まれにくい傾向を示した。これもまた、ラングミュアの吸着等温式によって説明することができ、成長最表面のIn原子の存在がBi表面被覆率を減少させるために、InGaAsBi結晶内のBi組成がGaAsBiと同一V/III比では減少すると考えられる。今後は、最終目標としているテラヘルツ波発生検出用光伝導アンテナに適した禁制帯幅を実現するInとBi両組成が得られるよう、低温成長InGaAsBiのMBE成長条件を更に最適化する必要があることが明らかになった。また、分担者(石川)は、GaAsBiナノワイヤについて陽電子消滅測定にも有用となる高密度・大容量成長の技術基盤を構築することができた。


    更に、分担者(上殿)は、昨年度代表者がMBE成長した厚さ2 μmの低温成長GaAsBiの空孔型点欠陥密度を陽電子消滅法を用いて測定した。Bi組成が3%未満の範囲では、Bi組成が試料ごとに異なる低温成長GaAsBiの空孔型点欠陥密度に現時点では大きな差がないことが明らかになった。
    Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (B), Hiroshima University, 21H01829
  • Optical, electronic, and spin engineering by semiconductor/oxide composite nanowires
    Grants-in-Aid for Scientific Research
    01 Apr. 2019 - 31 Mar. 2023
    Ishikawa Fumitaro
    We synthesized semiconductor/oxide composite nanowires by combining molecular beam epitaxial growth of compound semiconductor nanowires with various oxide deposition techniques. The nanowires are expected to have novel optical, electronic, and spin properties. We obtained diluted nitride and diluted bismuth nanowires and reported their properties. By applying various oxidation techniques and oxide deposition techniques to these compound semiconductor nanowires, we have also succeeded in obtaining nanowires in which AlOx and TiOx are integrated with high precision as semiconductor/oxide composite nanowires. AlOx was effective as a surface protective layer for confinement of electrons and light, and on the other hand, we also investigated their characteristic white light emission. Throughout the period, we have succeeded in the growth of large-volume and high quality nanowires on 2 inch Si wafer.
    Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (A), Ehime University, 19H00855
  • ナノワイヤ蛍光体による偏光白色LEDの開発               
    研究助成プログラム「新産業を生む科学技術」
    Apr. 2020 - Mar. 2023
    石川史太郎
    キヤノン財団, Principal investigator
  • Semiconductor electron beam source that brings fine-area dynamics observation technology to damage sensitive samples
    Grants-in-Aid for Scientific Research
    01 Apr. 2019 - 31 Mar. 2022
    Nishitani Tomohiro
    For the first technological innovation in electron microscopy electron beam sources in 50 years, this study has worked to realize an electron beam with never-before-seen high performance and versatility using a semiconductor photocathode.
    By optimizing the materials and structures of semiconductors such as gallium nitride and gallium arsenide in this research, we succeeded in achieving high performance with electron momentum dispersion one order of magnitude lower than that of conventional technologies, a large current at the milliampere level, and generating pulsed electron beams with nanosecond width which is difficult with conventional technologies.
    Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (A), Nagoya University, Coinvestigator, Competitive research funding, 19H00666
  • 高温・高圧合成による次世代電子材料ダイヤモンドの創出               
    研究助成
    Apr. 2020 - Mar. 2021
    石川史太郎
    池谷科学技術新興財団, Principal investigator
  • IoT社会を支える省エネルギー光通信用新規半導体レーザの開発               
    試験研究 (A)
    Apr. 2020 - Mar. 2021
    富永依里子
    中国電力技術研究財団, 広島大学, Coinvestigator
  • ビスマス系半導体半金属混晶の量子構造を活用した新規光学デバイスの開発               
    研究助成 (自然科学)
    Jun. 2019 - Dec. 2020
    富永依里子
    村田学術振興財団, 広島大学, Coinvestigator
  • Establishing doping technique for semi-conducting nano-polycrystalline diamond
    Grants-in-Aid for Scientific Research
    30 Jun. 2017 - 31 Mar. 2020
    Ishikawa Fumitaro
    Nano-polycrystalline diamond could be synthesized in the sample in which P was ion-implanted into the starting material graphite and converted directly into diamond. When P was ion-implanted into a commercially available CVD diamond and a high temperature and high pressure was applied, the crystallinity of the sample surface, which was lost during the ion implantation, was recovered and epitaxial growth was progressed. At that time, the Pyramidal hillock, commonly observed around the defect by the other methods, also appears by this method. By using appropriate ion implantation and high-temperature/high-pressure treatment, we obtained a diamond with P as the dominant impurity. When Sn doping was attempted by the same method, luminescence that seems to originate from Sn-V defects was obtained.
    Japan Society for the Promotion of Science, Grant-in-Aid for Challenging Research (Exploratory), Ehime University, Principal investigator, Competitive research funding, 17K18883
  • Establishment of semiconductor-oxide composite nanowires and its application to photocatalyst
    Grants-in-Aid for Scientific Research
    01 Apr. 2016 - 31 Mar. 2020
    Ishikawa Fumitaro
    We establish a new nanowire material that combines GaAs-based compound semiconductors having high electronic and optical properties with oxides of the various and stable properties.
    We succeeded in extending the GaAs nanowire function by adding nitrogen and bismuth. In addition, we succeeded in forming GaAs/AlGaOx heterostructure nanowires by simple natural oxidation. ALso, we have fabricated high-precision GaAs/TiO heterostructure nanowires by combining crystal growth and sputtering. We demonstrated that the GaAs nanowire array fabricated on the cm-sized Si substrate acts as a photoanode.
    Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (A), Ehime University, Principal investigator, Competitive research funding, 16H05970
  • Establishment of carrier controlled semiconducting diamond by high-pressure and high-temperature technique
    Grants-in-Aid for Scientific Research
    01 Apr. 2015 - 31 Mar. 2018
    Ishikawa Fumitaro
    For the future application of electronic materials, we investigates the conductivity of nano-polycrystalline diamond synthesized by high-pressure and high-temperature technique. Also to control its conductivity, we tried impurity doping on the diamond. We observed semiconducting conductivity for the nano-polycrystalline diamond at temperatures higher than 400 degree C. Also, optical characteristics were investigated on that. When nano-polycrystalline diamond was synthesized with InP, it seemed to be introduced into the crystal. We prepared single crystalline diamond and put P ion implantation on its surface. After applying high pressure and high temperature for the diamond, unexpected pyramidal microstructure was formed on the surface.
    Japan Society for the Promotion of Science, Grant-in-Aid for Challenging Exploratory Research, Ehime University, Principal investigator, Competitive research funding, 15K13957
  • 新エレクトロニクス材料としての化合物半導体/酸化物融合ナノワイヤ確立               
    研究助成
    2015 - 2016
    石川史太郎
    加藤科学振興会, Principal investigator, Competitive research funding
  • 半導体・酸化物融合による新材料ナノワイヤエレクトロニクスの創出               
    研究助成
    2014 - 2015
    石川史太郎
    村田学術振興財団, Principal investigator, Competitive research funding
  • Dielectric rod type photonic crystal laser using dilute nitride semiconductor light source
    Grants-in-Aid for Scientific Research
    01 Apr. 2011 - 31 Mar. 2014
    ISHIKAWA Fumitaro
    We investigated the fabrication of dielectric rod type photonic crystal laser using dilute nitride semiconductor nanostructures. The study was focused on to the growth of the dilute nitride nano-material using molecular bean epitaxy, and its application to photonic crystal device. We could obtain core-shell type GaAs/GaAsN nanowire. Further, the emission wavelength at the near infrared 950 nm was observed by controlling the amount of introduced nitrogen into the GaAsN layer. Introducing the GaInNAs quantum wells into a cavity structure on which rod-type photonic crystal is patterned, we observe close to tenfold enhancement of extracted luminescence efficiency from the surface depending on the correlated variation photonic bandgap.
    Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (A), Principal investigator, Competitive research funding, 23686004
  • 希釈窒化物半導体GaAsNナノワイヤの結晶成長とフォトニック結晶展開               
    倉田奨励金
    Apr. 2013 - Mar. 2014
    石川史太郎
    倉田記念日立科学技術財団, Principal investigator, Competitive research funding
  • Study on atomic relaxation of III-N-V semiconductor
    Grants-in-Aid for Scientific Research
    2008 - 2012
    KONDOW Masahiko, WAKAHARA Akihiro, EMURA Shuichi, ISHIKAWA Fumitaro
    III-N-V semiconductors, such as GaInNAs,are material systems of interest showing prospects for the next generation optical devices such as laser diodes. Due to the requirement of low growth temperature, the as-grown samples of III-N-V semiconductors are known to contain a quantity of defects within the crystal. Post growth annealing is then a vital technique for its application to devices. However, the phenomena induced by annealing within the material system are still well not understood. We here employ large-scale synchrotron radiation facilities for the further investigation. X-ray absorption fine structure (XAFS) is a strong tool for the analysis of local atomic structure of materials. High-resolution hard X-ray photoelectron spectroscopy (HXPES) with the larger escape depth of photoelectrons as deep as several-tens nm facilitates non-destructive studies of bulk materials, nanoscale buried layers. Comparing the electrical status and bond configuration obtained by those, we analyze the annealing effect on the atomic relaxation of GaInNAs material system.
    Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (B), Osaka University, 20360139
  • 極薄窒化層導入による新手法半導体バンドエンジニアリングの創製               
    研究助成
    2010 - 2011
    石川史太郎
    光科学技術研究振興財団, Principal investigator, Competitive research funding
  • Reproducible growth technique for GaInNAs and its application to long-wavelength laser diodes
    Grants-in-Aid for Scientific Research
    2006 - 2010
    KONDOW Masahiko, FUJIWARA Yasufumi, MORI Nobuya, MOMOSE Hideki, ISHIKAWA Fumitaro, MORIFUJI Masato
    We pursuit the reproducible growth of high-quality long-wavelength emitting GaInNAs by molecular beam epitaxy (MBE). Examining the effect of nitrogen introduction and its correlation between impurity incorporation, we find the source species especially Al is unintentionally incorporated into the epitaxial layer followed by the concomitant incorporation of O and C. A model considering gas-phase scattering can explain the phenomena, suggesting that a large amount of N_2 gas causes the scattering of residual Al atoms with an occasional collision resulting in the atoms directed toward the substrate. Hence, the reduction of the sublimated Al beam at the growth period can suppress the incorporation of the unintentional impurities, realizing highly-pure epitaxial layer.
    Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research on Priority Areas, Osaka University, 18069008