SUBAGYO AGUS

Faculty of Information Science and Technology Electronics for Informatics Advanced ElectronicsAssociate Professor
Education and Research Center for Mathematical and Data ScienceAssociate Professor
Last Updated :2025/07/05

■Researcher basic information

Researchmap personal page

Research Keyword

  • 薄膜
  • 表面科学
  • バイオセンサー
  • カーボンナノチューブ
  • グラフェン
  • スピントロニクス

Research Field

  • Manufacturing technology (mechanical, electrical/electronic, chemical engineering), Electronic devices and equipment
  • Nanotechnology/Materials, Thin-film surfaces and interfaces
  • Nanotechnology/Materials, Nanomaterials

Educational Organization

■Career

Career

  • Apr. 2021 - Present
    Hokkaido University, Graduate School of Information Science and Technology, Associate Professor
  • Apr. 2019 - Mar. 2021
    北海道大学, 大学院情報科学研究院, 特任准教授
  • Apr. 2018 - Mar. 2019
    Hokkaido University, Creative Research Institution, 特任助教
  • Apr. 2015 - Mar. 2018
    Hokkaido University, Creative Research Institution, 博士研究員

Educational Background

  • Apr. 1997 - Mar. 2000, Hokkaido University, Graduate School of Engineering, 電子情報工学専攻 博士後期課程

■Research activity information

Papers

Other Activities and Achievements

Lectures, oral presentations, etc.

  • Mapping cell-to-cell variations in power-law rheology investigated by multifrequency force modulation atomic force microscopy               
    M. Sawano, R. Tanaka, R. Takahashi, K. Kurubayashi-Shigetomi, A. Subagyo, K. Sueoka, T. Okajima
    MOLECULAR BIOLOGY OF THE CELL, 2016, AMER SOC CELL BIOLOGY, English
    2016 - 2016
  • Quantitative Rheological Measurements of Confluent Cell Using Atomic Force Microscopy
    Ryosuke Takahashi, Kaori Kuribayashi-Shigetomi, Agus Subagyo, Kazuhisa Sueoka, Takaharu Okajima
    2014 INTERNATIONAL SYMPOSIUM ON MICRO-NANOMECHATRONICS AND HUMAN SCIENCE (MHS), 2014, IEEE, English
    2014 - 2014, Rheological properties of cells are associated with various cell functions and thus are considered to be an indicator for diagnosing cell disease. Atomic force microscopy (AFM) is a powerful tool for quantifying the mechanical properties of isolated single cells. For example, our AFM technique reported previously revealed that the complex shear modulus of single cells exhibited a large cell-to-cell variation which depended on frequency. By contrast, rheological properties of cell population such as cells in confluent condition have been less understood. Thus, it is valuable to investigate how quantitatively the AFM technique can be applied to cell population such as cells in confluent condition. As a result, rheological properties of cells in confluent conditions can be relatively rapidly measured by our AFM setup modifying a force modulation AFM mode. This suggests that the AFM technique is useful for diagnosing not only single cells but also cell population and cell assembly.
  • Atomic Force Microscopy for Mapping Mechanical Property of the Whole Cell Assembly
    Ryosuke Tanaka, Yuki Fujii, Junpei Kikkawa, Kaori Kuribayashi-Shigetomi, Agus Subagyo, Kazuhisa Sueoka, Takaharu Okajima
    2014 INTERNATIONAL SYMPOSIUM ON MICRO-NANOMECHATRONICS AND HUMAN SCIENCE (MHS), 2014, IEEE, English
    2014 - 2014, Cells rapidly undergo cell division during the embryogenesis. Such dynamic behaviors of cells during the embryogenesis are considered to be strongly associated with their mechanical properties such as cell-cell mechanical interactions and cell stiffness. However, the interplay between the morphogenesis and the mechanical property of whole cell assembly during the developmental process has not been well understood. To exploring the mechanism of forming the whole cell assembly, we proposed atomic force microscopy (AFM) combined with a microarray technique, which allows us to map mechanical property of the whole cell assembly. In this AFM setup, the cell assembly is randomly directed in the microarray well, and thus the average mechanical property of the whole cell assembly can be reconstructed from mapping images obtained from different cell assemblies.
  • Temporal Change in Complex Shear Modulus of Cells: An Atomic Force Microscopy Study
    PingGen Cai, Ryosuke Takahashi, Kaori Kuribayashi-Shigetomi, Agus Subagyo, Kazuhisa Sueoka, Takaharu Okajima
    2014 INTERNATIONAL SYMPOSIUM ON MICRO-NANOMECHATRONICS AND HUMAN SCIENCE (MHS), 2014, IEEE, English
    2014 - 2014, To sort living cells according to our needs, it is important to understand how degree cell property measured for cell sorting fluctuates in time. Mechanical property of cells is one of essential indicators for cell sorting. Thus, in this study, we attempted to measure a time evolution of viscoelastic property such as complex shear modulus, G* of single cells adhered on substrates using atomic force microscopy (AFM). We observed that the G* largely fluctuated in time even the cells are placed on substrates in a confined condition. This indicates that in mechanical cell sorting, mechanical fluctuations of cells should be carefully estimated so that cells are precisely separated by taking the measured data involving cell fluctuations into account.

Affiliated academic society

  • Society of Nano Science and Technology               
  • THE JAPAN SOCIETY OF APPLIED PHYSICS               
  • フラーレン・ナノチューブ・グラフェン学会               

Research Themes

  • Correlation between antiphase boundary defects and surface inhomogeneous properties in magnetite films
    Grants-in-Aid for Scientific Research
    01 Apr. 2021 - 31 Mar. 2024
    アグス スバギョ
    初年度では,炭素吸着したマグネタイト表面のスピン偏極度向上の効果を調べるために,申請の段階で実施し始めた通電加熱法の炭素吸着の条件の最適化を図った.また,通電加熱法の炭素吸着の結果を踏まえ,電子ビーム加熱蒸着装置を用いた炭素吸着を検討して実施した.STMやLEED等による原子構造の評価,XPSを用いたマグネタイト組成や炭素吸着時の不純物の評価もおこなった.
    マグネタイト試料は,MgO(001)基板にマグネタイト(001)薄膜をエピタキシャル成長させて作成した.マグネタイト薄膜表面は,清浄表面である再構成構造を示すことと,逆位相境界を有することを原子分解STMで確認した.このようなマグネタイト清浄表面上に,通電加熱したグラッシーカーボンフォイルを用いて炭素吸着をおこなった結果,マグネタイト薄膜表面の鉄原子列上に原子レベルの炭素吸着の他に,クラスター状に吸着した炭素もわずかに観察されていた.炭素吸着のない鉄原子上と原子状炭素吸着の局所電子状態を比較すると,吸着炭素上の局所電子状態では新たな状態がみられ,理論計算によって導かれた電子状態におけるスピン偏極したダウンスピンの電子状態と一致した.
    均一な炭素吸着した表面を作製するために,炭素吸着チェンバーに通電加熱法の他に電子ビーム加熱蒸着装置を設置した.さらに,炭素吸着のレートを正確に把握するために膜厚モニターも設置した.電子ビーム加熱蒸着装置を用いることにより,通電加熱法より低いレートでの吸着が可能であり,クラスター状の炭素吸着が少なく,より均一な炭素原子吸着したマグネタイト薄膜表面が作製できた.
    Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C), Hokkaido University, 21K04824

Industrial Property Rights

  • 電界効果トランジスタ、その製造方法およびバイオセンサ               
    Patent right, アグス スバギョ, 中村基訓, 山林智明, 高橋理, 菊地洋明, 近藤勝則
    PCT/JP2009/007253, 2009
    WO/2010/079573, 2010
  • 電界効果トランジスタおよびその製造方法               
    Patent right, 菊地洋明, 高橋理, 近藤勝則, 山林智明, 小笠原邦男, 石垣忠, 稗貫豊, 中村基訓, アグス スバギョ
    PCT/JP2009/002269, 2009
    WO/2009/144902, 2009